[1]
W.T. Freeman, C.D. Weissman, Television control by hand gestures. Intl. Workshop on Automatic Face and Gesture Recognition, Zurich, Switzerland, June, (1995).
Google Scholar
[2]
N. Stefanov, A. Galata, R. Hubbold, Real-time hand tracker using variable-length markov models of behaviour. Computer Vision and Image Understanding, 108(1-2), 98–115, (2007).
DOI: 10.1016/j.cviu.2006.10.017
Google Scholar
[3]
C. Wang, K. Wang, Hand posture recognition using adaboost with sift for human robot interaction. Intl. Conf. on Advanced Robotics, Jeju Island, South Korea, 21-24 August, (2007).
Google Scholar
[4]
A. Kurakin, Z. Zhang, Z. Liu, Real Time System for Dynamic Hand Gesture Recognition with a Depth Sensor, 20th European Signal Processing Conf., Bucharest, Romania, August 27-31, (2012).
Google Scholar
[5]
M. Van den Berg, L. Van Gool, Combining RGB and ToF Cameras for Real-time 3D Hand Gesture Interaction, IEEE Workshop on Applications of Computer Vision, 5-7 January (2011).
DOI: 10.1109/wacv.2011.5711485
Google Scholar
[6]
Z. Li, R. Jarvis, Real Time Hand Gesture Recognition Using a Range Camera. Australasian Conf. on Robotics and Automation, Sydney, Australia, December 2-4, (2009).
Google Scholar
[7]
M. Kolsch, M. Turk, Fast 2D hand tracking with flocks of features and multi-cue integration. IEEE Workshop on Real-Time Vision for Human-Computer Interaction, p.158–165, (2004).
DOI: 10.1109/cvpr.2004.345
Google Scholar
[8]
I. Oikonomidis, N. Kyriazis, A. Argyros, Markerless and efficient 26-dof hand pose recovery. Asian Conf. on Computer Vision, Queenstown, New Zealand, 8-12 November (2010).
DOI: 10.1007/978-3-642-19318-7_58
Google Scholar
[9]
B. Stenger, A. Thayananthan, P.H.S. Torr, R. Cipolla, Model-based hand tracking using a hierarchical bayesian filter. IEEE Trans. Pattern Analysis and Machine Intell., 28(9), 1372–1384, (2006).
DOI: 10.1109/tpami.2006.189
Google Scholar
[10]
M. J. Black, and A. D. Jepson, Recognizing Temporal Trajectories using the Condensation Algorithm. Third IEEE Intl. Conf. on Automatic Face and Gesture Recognition, Nara, Japan, April (1998).
DOI: 10.1109/afgr.1998.670919
Google Scholar
[11]
G. Shaogang, M. Walter, A. Psarrou, Recognition of Temporal Structures: Learning Prior and Propagating Observation Augmented Densities via Hidden Markov States. Proc. Seventh Intl. Conf. on Computer Vision, (1999).
DOI: 10.1109/iccv.1999.791212
Google Scholar
[12]
S. Rajko, G. Qian, T. Ingalls, J. James, Real-time gesture recognition with minimal training requirements and on-line learning. Intl. Conf. on Computer Vision and Pattern Recognition, (2007).
DOI: 10.1109/cvpr.2007.383330
Google Scholar
[13]
S. Wang, A. Quattoni, L. P. Morency, D. Demirdjian, T. Darrell. Hidden conditional random fields for gesture recognition. Intl. Conf. on Computer Vision and Pattern Recognition, (2006).
DOI: 10.1109/cvpr.2006.132
Google Scholar
[14]
H. -I. Suk, B. -K. Sin, S. -W. Lee, Hand Gesture Recognition Based on Dynamic Bayesian Network Framework. Pattern Recognition, 2010, 43(9), 3059-3072.
DOI: 10.1016/j.patcog.2010.03.016
Google Scholar
[15]
X. Shen, G. Hua, L. Williams, Y. Wu, Motion Divergence Fields for Dynamic Hand Recognition. Proc. of Automatic Face and Gesture Recognition, 2011, 492-499.
DOI: 10.1109/fg.2011.5771447
Google Scholar
[16]
X. Shen, G. Hua, L. Williams, Y. Wu, Dynamic Hand Gesture Recognition: An Exemplar- Based Approach from Motion Divergence Fields. Journal of Image and Vision Computing, 2012, 30(3), 227-235.
DOI: 10.1016/j.imavis.2011.11.003
Google Scholar
[17]
Comaniciu, D.; Meer, P. Mean Shift: A Robust Approach Toward Feature Space Analysis, IEEE Trans. Pattern Recognition and Machine Intell., 24(5), 603-619, (2002).
DOI: 10.1109/34.1000236
Google Scholar
[18]
M. Nicolescu, and G. Medioni, Perceptual grouping from motion cues - a 4-D voting approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25(4), p.492–501, (2003).
DOI: 10.1109/tpami.2003.1190574
Google Scholar
[19]
K. Kim, T.H. Chalidabhongse, D. Harwood, L. Davis, Real-time Foreground–Background Segmentation Using Codebook Model. Real-time Imaging, 11(3), 167-256, (2005).
DOI: 10.1016/j.rti.2004.12.004
Google Scholar
[20]
A. Cheddad, J. Condell, K. Curran, P. A. Mc Kevitt, Skin Tone Detection Algorithm for an Adaptive Approach to Steganography. Signal Processing, 2009, 89, 2465–2478.
DOI: 10.1016/j.sigpro.2009.04.022
Google Scholar