On some Operator Functional Equations in Locally Convex Algebras

Article Preview

Abstract:

This paper aims to prove the existence of the solutions of some operator functional equations of sinus type in universally bounded operator algebra, where the operator is defined on a locally convex space. Some results based on the work of B. Sz.-Nagy following the representation model of operator groups are established.

You have full access to the following eBook

Info:

Periodical:

Pages:

527-534

Citation:

Online since:

June 2013

Authors:

Export:

Share:

Citation:

[1] G.R. Allan, A spectral theory for locally convex algebras, Proc. London Math. Soc. (3) 15 (1965), pp.399-421.

Google Scholar

[2] F. G. Bonales, R. V. Mendoza, A formula to calculate the spectral radius of a compact linear operator, Internat. J. Math. Sci., 20, (3), (1997), pp.585-588.

DOI: 10.1155/s0161171297000793

Google Scholar

[3] G. Da Prato, E. Giusti, Una caratterizzazione dei generatori di funzioni coseno astratte, Bull. Un. Mat. Italiana, 22 (1967), pp.357-362.

Google Scholar

[4] Da Prato, Semigruppi periodici, Ann. Mat. Pura. Appl., 78 (1968), pp.55-67.

DOI: 10.1007/bf02415109

Google Scholar

[5] D. Van Dulst, Barreledness of subspaces of countable co-dimension and the closed graph theorem, Compositio Mathematica, 24 , (2), (1972), pp.227-234.

Google Scholar

[6] N. Dunford, Spectral theory I. Convergence to projection, Trans. Amer. Math. Soc. 54 (1943), pp.185-217.

Google Scholar

[7] N. Dunford, J.T. Schwartz, Linear Operators I: General theory, Pure and Appl. Math., vol. 7, Interscience Publishers, Inc., New-York (1958).

Google Scholar

[8] H.O. Fattorini, Ordinary differential equations in linear topological spaces, II., J. Diff. Eq. 6(1969), pp.50-70.

DOI: 10.1016/0022-0396(69)90117-x

Google Scholar

[9] E. Giusti, Funzioni coseno periodiche, Bull. Un. Math. Ital., 22 (1967), pp.478-485 (1) (2) (3) (4) (5) (6).

Google Scholar

[10] T. Husain, The open mapping and closed graph theorems in toplogical vector spaces, Oxford Mathematical Monographs, (1965).

DOI: 10.1007/978-3-322-96210-2_3

Google Scholar

[11] G.A. Joseph, Boundedness and completeness in locally convex spaces and algebras, J. Austral. Math. Soc. 24 (Series A) (1977).

Google Scholar

[12] E. Kramar, Invariant subspaces for some operators on locally convex spaces, Comment. Math. Univ. Carolinae 38, 3 (1997), pp.635-644.

Google Scholar

[13] J. Karol, W. Sliwa, M. Wojtowicz, Cs-barreled spaces, Collect. Math. 45, 3 (1994), pp.271-276.

Google Scholar

[14] S. Kurepa, On some functional equations in Banach spaces, Studia Math., 19 (1960) pp.149-158.

DOI: 10.4064/sm-19-2-149-158

Google Scholar

[15] R. Larsen, An introduction to the theory of multipliers, Springer, Berlin, (1971).

Google Scholar

[16] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (2) (1974), pp.337-340.

DOI: 10.1090/s0002-9939-1974-0417821-6

Google Scholar

[17] A. Michael, Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc., 11, (1952).

Google Scholar

[18] R.T. Moore, Banach algebras of operators on locally convex spaces, Bull. Am. Math. Soc. 75 (1969), pp.69-73.

DOI: 10.1090/s0002-9904-1969-12147-6

Google Scholar

[19] B. Nagy, On some functional equations in Banach algebras, Publ. Math., Tom 24, Fasc. 3-4(1977), pp.257-261.

DOI: 10.5486/pmd.1977.24.3-4.06

Google Scholar

[20] V. Ptak, Completeness and the open mapping theorem, Bulletin de la S.M.F., tome 86 (1958), pp.41-74.

Google Scholar

[21] M. Sova, Cosine operator functions, Rozprawy Mat., XLIX (1966), pp.3-47.

Google Scholar

[22] E. B van Vleck, A functional equation for the sine, Ann Math. 11(1910), pp.161-165.

Google Scholar

[23] M. Watanabe, A perturbation theory for abstract evolution equations of second order, Proc. Jap. Acad., 58, Ser. A (1982), pp.143-146.

Google Scholar

[24] M. Watanabe, A new proof of the generation theorem of cosine families in Banach spaces, Houston J. of Math., vol. 10, nr. 2, (1984), pp.285-290.

Google Scholar