[1]
P. Wu, Y.M. Ro, C.S. Won & Y. Choi, Texture Descriptors in MPEG-7, International Conference on Computer Analysis of Images and Patterns (CAIP 01), (2001), p.21–28.
DOI: 10.1007/3-540-44692-3_4
Google Scholar
[2]
R. Peteri and D. Chetverikov. Dynamic texture recognition using normal how and texture regularity. In Proc. Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2005), Estoril, Portugal, (2005).
DOI: 10.1007/11492542_28
Google Scholar
[3]
S. Dubois, R. Peteri, A Michel Menard, A Comparison. of Wavelet Based Spatio-temporal Decomposition Methods for Dynamic Texture Recognition, Proceedings of the 4th Iberian Conference on Pattern Recognition and Image Analysis, voa de Varzim, Portugal, (2009).
DOI: 10.1007/978-3-642-02172-5_41
Google Scholar
[4]
G. Zhou, N. Dong, Y. Wang, Non-Linear Dynamic Texture Analysis and Synthesis Using Constrained Gaussian Process Latent Variable Model Circuits, PACCS '09 Pacific-Asia Conference on Communications and Systems, Chengdu, China, 16-17 May (2009).
DOI: 10.1109/paccs.2009.30
Google Scholar
[5]
M. Szummer, Temporal Texture Modeling. Technical Report 346, MIT (1995).
Google Scholar
[6]
S. Dubois, R. Peteri, A Michel Menard, A 3D discrete curvelet based method for segmenting dynamic textures, Proceedings of the 16th IEEE international conference on Image processing ICIP'09, Cairo, Egypt, (2009), p.1365–1368.
DOI: 10.1109/icip.2009.5413352
Google Scholar
[7]
R. Peteri, D. Chetverikov, Qualitative Characterization of Dynamic Textures for Video Retrieval, International Conference on Computer Vision and Graphics ICCVG 04, Warsaw, Poland, September (2004), p.33–38.
DOI: 10.1007/1-4020-4179-9_6
Google Scholar
[8]
T. Bouwmans, F. El Baf, B. Vachon, Statistical Background Modeling for Foreground Detection: A Survey, Handbook of Pattern Recognition and Computer Vision, World Scientific Publishing, Volume 4, Part 2, Chapter 3, January (2010), pp.181-199.
DOI: 10.1142/9789814273398_0008
Google Scholar
[9]
R. Peteri, Tracking Dynamic Textures using a Particle Filter Driven by Intrinsic Motion Information, Machine Vision and Applications, January (2010), pages 1–9.
DOI: 10.1007/s00138-009-0236-5
Google Scholar
[10]
A.E. Svolos, A. Todd-Pokropek, Time and space results of dynamic texture feature extraction in MR and CT image analysis, Information Technology in Biomedicine, IEEE Transactions on , vol. 2, no. 2, June (1998), pp.48-54.
DOI: 10.1109/4233.720522
Google Scholar
[11]
J. P. Cocquerez, S. Philipp, Analyse d'images: filtrage et segmentation, Mason, Paris (1995).
Google Scholar
[12]
R. Peteri, S. Fazekas, M. Huiskes, A Comprehensive Database of Dynamic Textures, Pattern Recognition Letters, vol. 31, (2010), p.1627–163.
DOI: 10.1016/j.patrec.2010.05.009
Google Scholar
[13]
M. Mocofan, R. Vasiu, Dynamic textures indexing using the co-occurrence matrix features, Applied Computational Intelligence and Informatics (SACI), 2012 7th IEEE International Symposium on , Timisoara, Romania, (2012), pp.327-330.
DOI: 10.1109/saci.2012.6250024
Google Scholar
[14]
M. Mocofan, F. Alexa, Analysis of dynamic textures using a 3D approach for the co-occurrence matrix features, Electronics and Telecommunications (ISETC), 2012 10th International Symposium on , Timisoara, Roania, (2012), pp.235-238.
DOI: 10.1109/isetc.2012.6408042
Google Scholar