Simulation of Particles’ Activity in Discharge Channel of PMEDM

Article Preview

Abstract:

Powder mixed EDM can effectively improve the surface quality of a machined workpiece. In order to study the mechanism of powder mixed EDM process, particles’ activities in working conditions are simulated and corresponding experiments are done. A 3D electric fields model described by finite element method of the particles suspended in working fluid in the electric field is built, the generated field is computed and presented, and the activities of particles in the breakdown process are analyzed. The results show that this method can serve as a good way to learn the activities of particles in the breakdown of discharge.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

297-302

Citation:

Online since:

December 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.S. Zhao, Q.G. Meng and Z.L. Wang: J. Mater. Proc. Tech, Vol. 129 (2002), pp.30-33.

Google Scholar

[2] S. Das, M. Klotz and F. Klocke: J. Mater. Proc. Tech, Vol. 142 (2003), pp.434-451.

Google Scholar

[3] T. Hirata, O.T. Guenat, T. Akashi, M.A. Gretillat and N.F. de Rooij: J. Microelectromech. S., Vol. 8 (1999), pp.523-528.

DOI: 10.1109/84.809068

Google Scholar

[4] T. Hirata, O.T. Guenat, T. Akashi, M.A. Gretillat and N.F. de Rooij: Proc. Int. Symp. on Micromechatronics Hum. Sci. (Nagoya, Japan 1998), pp.77-82.

Google Scholar

[5] Y.G. Wang and F.L. Zhao: J. Wuhan Univ. Tech., Vol. 28 (2006), pp.417-422.

Google Scholar

[6] M. Kunieda and K. Yanatori: Int. J. Elec. Mach, Vol. 2 (1997), pp.43-49.

Google Scholar

[7] K. Furutania, A. Sanetoa, H. Takezawaa, N. Mohri and H. Miyake: Precis. Eng. Nanotechnology, Vol. 25 (2001), pp.138-144.

Google Scholar

[8] H. Noha, C. Indira, G.P. Nelson, and L.C. Male: Phys. Med. Biol, Vol. 48 (2003), p.3277.

Google Scholar

[9] P. Atten, J.L. Coulomb and B. Khaddour: Ieee. T. Magn., Vol. 41 (2005), pp.1436-1439.

Google Scholar

[10] M.D. Driga and A. Wu: Proc. 6th Int. Conf. Conduction Breakdown Solid Dielec. ( Vasteras, Sweden 1998), pp.543-547.

Google Scholar

[11] V.V. Choulkov: Ieee. T. Dielect. El. In, Vol. 12 (2005), pp.98-103.

Google Scholar

[12] A.M. Mahdy, H.I. Anis and S.A. Ward: Ieee. T. Dielect. El. In., Vol. 5 (1998), p.612.

Google Scholar

[13] R. Coelho and B. Aladenize: Les dielectriques proprietes dielectriques des materiaux isolants (Science Press, China 2000).

Google Scholar

[14] T.J. Lewis: Ieee. T. Dielect. El. In., Vol. 5 (1998), p.306.

Google Scholar

[15] R.P. Pan, C.R. Sheu, and L. Lam: Chaos. Soliton. Fract., Vol. 6 (1995), pp.495-509.

Google Scholar

[16] H.Z. Ding and B.R. Varlow, Ieee. T. Dielect. El. In., Vol. 12 (2005), pp.81-89.

Google Scholar

[17] B. Meulenbroek: Streamer branching: conformal mapping and regularization. (Technische Universiteit, Eindhoven 2006).

Google Scholar

[18] P. Pecas and E. Henriques: Int. J. Mach. Tool. Manu, Vol. 43 (2003), pp.1465-1471.

Google Scholar

[19] Y.S. Wong, L.C. Lim, I. Rahuman and W.M. Tee: J. Mater. Proc. Tech., Vol. 79 (1998), pp.30-40.

Google Scholar

[20] F. Klocke, D. Lung, G. Antonoglou and D. Thomaidis: J. Mater. Proc. Tech., Vol. 149 (2004), pp.191-197.

Google Scholar

[21] H.K. Kansal, S. Singh and P. Kumar: J. Mater. Proc. Tech., Vol. 169 (2005), pp.427-436.

Google Scholar