An Improved Element-Free Galerkin Method for a Kind of KdV Equations

Article Preview

Abstract:

An improved element-free Galerkin method is presented for the numerical solution of the third-order nonlinear KdV equation by coupling the interpolating moving least-squares (IMLS) method with the Galerkin method. The shape function of the IMLS method satisfies the property of Kronecker Delta function, and then the essential boundary condition can be applied directly and easily without any additional numerical effort. A variational method is used to obtain the discrete equations. A numerical example is given to demonstrate the effectiveness of the method presented in this paper for KdV equation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

471-474

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.J. Korteweg, G. Vries: Philos. Mag., Vol. 39(1895), pp.422-443.

Google Scholar

[2] G. Turabi, K. Dogan: Appl. Math. Comput., Vol. 169(2005), pp.971-981.

Google Scholar

[3] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl: Comput. Meth. Appl. Mech. Eng., Vol. 139 (1996), pp.3-47.

Google Scholar

[4] T. Belytschko, Y.Y. Lu and L. Gu: Int. J. Numer. Meth. Eng., Vol. 37 (1994), pp.229-256.

Google Scholar

[5] P. Lancaster and K. Salkauskas: Math. Comput., Vol. 37 (1981), pp.141-158.

Google Scholar

[6] D.J. Korteweg and G. de Vries: Philos. Mag. Vol. 39 (1895), pp.422-443.

Google Scholar