Analyzing the Two-Dimensional (2+1) REMPI Spectra of Bromine and Carbon

Article Preview

Abstract:

Experimental investigation have been carried out for dissociation/ionisation of methyl bromide using time of flight mass spectrometer, and the mass signals m/e = 12, 13, 14, 15, 79、81、129 and 131 were assigned to H+、C+ 、CH+ 、CH2+ 、CH3+iBr+ (i = 79, 81)、(CH)2iBr+ (i=79, 81). Next, two resonant peaks of 79Br+*/ 81Br+* were observed at 280.41nm and 281.74nm due to spin-forbidden 5p and 5p which have not been reported before. At last, the C REMPI spectra found near 280.34nm、286.94nm and 284.21nm were assigned, too, which compared with the predicted wavelength values.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-164

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Global Ozone Research and Monitoring Project", Rep. No. 47, World Meteorological Organization, Geneva, 2003(Chapter 1).

Google Scholar

[2] V. Blanchet, P.C. Samartzis, A.M. Wodtke, UV photodissociation of methyl bromide and methyl bromide cation studied by velocity map imaging, J. Chem. Phys. 130 (2009) 034304.

DOI: 10.1063/1.3058730

Google Scholar

[3] C. Escure, T. Leininger, B. Lepetit, Product vibrational distributions in CH3Br photo-dissociation, J. Chem. Phys. 130 (2009) 244305.

DOI: 10.1016/j.cplett.2009.08.077

Google Scholar

[4] W.C. Price, The Far Ultraviolet Absorption Spectra and Ionization Potentials of the Alkyl Halides ,J. Chem. Phys. 4 (1936) 539.

Google Scholar

[5] G.C. Causley, B.R. Russell, The vacuum ultraviolet spectrum of bromosilane, J. Chem. Phys. 62 (1975) 848.

Google Scholar

[6] Bailin Zhang , Xiuyan Wang , Nanquan Lou , Bing Zhang , Jie Wei, Mass resolved MPI spectra of methyl iodide in the 430–490 nm region, Spectrochimica Acta Part A 57 (2001) 1759–1765.

DOI: 10.1016/s1386-1425(01)00388-2

Google Scholar

[7] Andre´ T. J. B. Eppink and David H. Parker, Methyl iodide A-band decomposition study by photofragment velocity imaging, J. Chem. Phys., Vol. 109, No. 12, 22 September (1998).

DOI: 10.1063/1.477087

Google Scholar

[8] H Kato, H Masui, M Hoshino, H Cho, O Ingólfsson, M J Brunger, P Limão-Vieira, H Tanaka. A-band methyl halide dissociation via electronic curve crossing as studied by electron energy loss spectroscopy,J. Chem. Phys. 133 (2010) 054304.

DOI: 10.1063/1.3464483

Google Scholar

[9] L.T. Molina, M.J. Molina, F.S. Rowland, L.T. Molina, M.J. Molina, and F.S. Rowland, "Ultraviolet absorption cross sections of several brominated methanes and ethanes of atmospheric interest, " J. Phys. Chem. 86, 2672-2676 (1982).

DOI: 10.1021/j100211a023

Google Scholar

[10] J.B. Burkholder, R.R. Wilson, T. Gierczak, R. Talukdar, S.A. McKeen, J.J. Orlando, G.L. Vaghjiani, and A.R. Ravishankara, Atmospheric fate of CF3Br, CF2Br2, CF2ClBr, and CF2BrCF2Br, J. Geophys. Res. 96, 5025-5043 (1991).

DOI: 10.1029/90jd02735

Google Scholar

[11] L. Orkin and E.E. Kasimovskaya, Ultraviolet absorption spectra of some Br-containing haloalkanes, J. Atmos. Chem. 21, 1-11 (1995).

DOI: 10.1007/bf00712435

Google Scholar

[12] Theodosia Gougousi, Peter C. Samartzis, and Theofanis N. Kitsopoulos , Photodissociation study of CH3Br in the first continuum,J. Chem. Phys., Vol. 108, No. 14, 8 April (1998).

DOI: 10.1063/1.475984

Google Scholar

[13] J.G. Underwood, I. Powis, Photofragmentation of CH3Br in the red wing of the first continuum absorption band, Phys. Chem. Chem. Phys. 1 (2000) 747.

DOI: 10.1039/a907905j

Google Scholar

[14] D. Ajitha, M. Wierzbowska, R. Lindh, P.A. Malmqvist, Spin-orbit ab initio study of alkyl halide dissociation via electronic curve crossing, J. Chem. Phys. 121 (2004)5761.

DOI: 10.1063/1.1784411

Google Scholar

[15] C. Escure, T. Leininger, B. Lepetit, J. Chem. Phys. Theoretical calculations of self-broadening coefficients in the n6 band ofCH3Br, 130 (2009) 244306.

Google Scholar

[16] D. Ajitha, M. Wierzbowska, R. Lindh, P.A. Malmqvist, Spin-orbit ab initio study of alkyl halide dissociation via electronic curve crossing, J. Chem. Phys. 121 (2004)5761.

DOI: 10.1063/1.1784411

Google Scholar

[17] S. Felps, P. Hochmann, P. Brint, S.P. McGlynn, J. Mol. Spectrosc. 59 (1976) 355.

Google Scholar

[18] R. Locht, B. Leyh, H.W. Jochims, H. Baumga¨rtel, The vacuum UV photoabsorption spectrum of methyl bromide (CH3Br) and its perdeuterated isotopomer CD3Br: a Rydberg series analysis, Chemical Physics 317 (2005) 73–86.

DOI: 10.1016/j.chemphys.2005.06.002

Google Scholar

[19] Xing X, P Wang, B Reed, SJ Baek, and CY Ng. 2008. Infrared Vacuum-Ultraviolet Laser Pulsed Field Ionization-Photoelectron Study of CH3Br(X˜ 2E3/2)., Journal of Physical Chemistry A 112(39): 9277-9282.

DOI: 10.1021/jp8019649

Google Scholar

[20] Fengyan Wang,M. Laura Lipciuc, Xueming Yang and Theofanis N. Kitsopoulos Multiphoton dissociation dynamics of CH3Br, Phys. Chem. Chem. Phys., 2009, 11, 2234–2240.

DOI: 10.1039/b815824j

Google Scholar

[21] NIST Chemistry WebBook; NIST (National Institute of Standards and Technology ) Chemistry WebBook.

Google Scholar

[22] E Biémont and C J Zeippen. Probabilities for forbidden transitions in atoms and ions: 1989-1995. A commented bibliography , Phys. Scr. 1996 192.

DOI: 10.1088/0031-8949/1996/t65/029

Google Scholar