Stochastic Stability of Mathieu-Van Der Pol System with Delayed Feedback Control

Article Preview

Abstract:

The asymptotic Lyapunov stability with probability one of Mathieu-Van der Pol system with time-delayed feedback control under wide-band noise parametric excitation is studied. First, the time-delayed feedback control force is expressed approximately in terms of the system state variables without time delay. Then, the averaged Itô stochastic differential equations for the system are derived by using the stochastic averaging method and the expression for the Lyapunov exponent of the linearized averaged Itô equations is derived. It is inferred that the Lyapunov exponent so obtained is the first approximation of the largest Lyapunov exponent of the original system, and the asymptotic Lyapunov stability with probability one of the original system can be determined approximately by using the Lyapunov exponent. Finally, the effects of time delay in feedback control on the Lyapunov exponent and the stability of the system are analyzed. The theoretical results are well verified through digital simulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

132-138

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Malek-Zavarei, M. Jamshidi.: Time-delay Systems: Analysis, Optimization and Applications. (New York: North-Holland 1987).

Google Scholar

[2] G. Stepan: Retarded Dynamical Systems: Stability and Characteristic Functions (Essex: Longman Scientific and Technical 1989).

Google Scholar

[3] H.Y., Hu, Z.H. Wang: Dynamics of Controlled Mechanical Systems with Delayed Feedback (Berlin: Springer 2002).

Google Scholar

[4] A.K. Agrawal, J.N. Yang: Earthquake Eng. Struct. Dyn, Vol. 26 (1997), p.1169.

Google Scholar

[5] J.P. Pu: ASCE J. Eng. Mech, Vol. 124 (1998), p.1018.

Google Scholar

[6] X.Y. Li, J.C. Ji, Colin H. Hansen and C.X. Tan: J Sound Vib., Vol. 291 (2006), p.644.

Google Scholar

[7] J.C. Ji, Colin H. Hansen: Chaos Solitons Fract., Vol. 25 (2005), p.461.

Google Scholar

[8] B.R. Nana Nbendjo, P. Woafo: Chaos Soliton Fract., Vol. 32 (2007), p.73.

Google Scholar

[9] M. Di Paola, A. Pirrotta: Probabil. Eng. Mech., Vol. 16 (2001), p.43.

Google Scholar

[10] C. Bilello, M. Di Paola and A. Pirrotta: Meccanica, Vol. 37 (2002), p.207.

DOI: 10.1023/a:1019659909466

Google Scholar

[11] W.Q. Zhu, Z.H. Liu: J. Sound Vib., Vol. 299 (2007), p.178.

Google Scholar

[12] W.Q. Zhu, Z.H. Liu.: Nonlinear Dyn. Vol. 49 (2007), p.31.

Google Scholar

[13] Z.H. Liu, W.Q. Zhu: Automatica, Vol. 44 (2008), p.1923.

Google Scholar

[14] Z.H. Liu, W.Q. Zhu: J. Sound Vib. Vol. 315 (2008), p.301.

Google Scholar

[15] L. Gammaitoni, P. Hanggi, P. Jung and F. Marchesoni: Rev Mod Phys Vol. 70 (1998), p.223.

Google Scholar

[16] V. Srinivasan, A.H. Soni: Shock Vib Digest, Vol. 14 (1982), p.13.

Google Scholar

[17] B.F. Spencer, J. Tang and C.G. Hilal: J Sound Vib, Vol. 140 (1990), p.163.

Google Scholar

[18] N.S. Namachchivaya: J Sound Vib, Vol. 151 (1991), p.77.

Google Scholar

[19] S.T. Ariaratnam, D.S.F. Tam: Z Angew Math Mech, Vol. 56 (1976), p.449.

Google Scholar

[20] M.F. Dimentberg: Statistical Dynamics of Nonlinear and Time-varying Systems (New York: Wiley, 1988).

Google Scholar

[21] G.Q. Cai, Y.K. Lin: Nonlinear Dyn., Vol. 6 (1994), p.163.

Google Scholar

[22] Z.L. Huang, W.Q. Zhu: J Sound Vib., Vol. 204 (1997)), p.563.

Google Scholar

[23] F. Benedettini, D. Zulli and M. Vasta: Nonlinear Dyn., Vol. 46 (2006), p.375.

Google Scholar

[24] Z.L. Huang, W.Q. Zhu and Y. Suzuki: J Sound Vib., Vol. 238 (2000), p.233.

Google Scholar

[25] Rong, H.W., Meng, G., Wang, X.D., Xu, W. and Fang, T.: Int J Non-Linear Mech, Vol. 39 (2004), p.871.

Google Scholar

[26] W. Xu, Q. He, T. Fang and H.W. Rong: Chaos Soliton Fract, Vol. 23 (2005), p.141.

Google Scholar

[27] W. Xu, Q. He, T. Fang and H.W. Rong: Int J Non-Linear Mech, Vol. 39 (2004), p.1473.

Google Scholar

[28] R.Z. Khasminskii: Theory of Probability and Applications, Vol. 11 (1967), p.390.

Google Scholar

[29] V.I. Oseledec: Trans. Moscow Math. Soc., Vol. 19 (1968), p.197.

Google Scholar