Dynamic Shear Modulus and Damping Ratio for Threshold Strain in Cohesionless Soils

Abstract:

Article Preview

Based on modern ideas of thermomechanics, small strain dynamic dissipation function of Hardin-Drnevich model for soils is formulated using the assumptions of the beeline and the skeleton curve shift laws. Fundamentally, for cohesionless soils, two types of cyclic strain thresholds are identified: first threshold strain and second threshold strain represent boundaries between fundamentally different dynamic characteristics of cyclic soil behavior. Comparison between the two threshold shear strain values and dynamic degradation curves obtained on exactly the same soils, the results showed that the ratio of secant modulus and maximum dynamic shear modulus for the first threshold strain are almost 1.0, and the damping ratio is almost constant. When dynamic strain level exceeds the second threshold strain, the soil behavior is considerably at nonlinear, and the primary deformation mechanism is related to fabric changes during cyclic loading. The first and the second threshold strains are therefore essential for the understanding and solving soil dynamic problems.

Info:

Periodical:

Edited by:

Paul P. Lin and Chunliang Zhang

Pages:

1603-1606

DOI:

10.4028/www.scientific.net/AMM.105-107.1603

Citation:

X. X. Guo "Dynamic Shear Modulus and Damping Ratio for Threshold Strain in Cohesionless Soils", Applied Mechanics and Materials, Vols. 105-107, pp. 1603-1606, 2012

Online since:

September 2011

Authors:

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.