C1 Natural Element Method for Couple-Stress Elasticity

Article Preview

Abstract:

The shape functions in C1 natural element method (C1 NEM) are built upon the natural neighbor interpolation (NNI), and realize the interpolation to nodal function and nodal gradient values, so that the essential boundary conditions (EBCs) can be imposed directly in a Galerkin scheme for the partial differential equations (PDEs). In the present paper, C1 NEM for couple-stress (CS) elasticity is constructed, and the typical example which has analytical solutions is presented to illustrate the effectiveness of the constructed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

370-373

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.D. Mindlin and H.F. Tiersten: Arch. Rat. Mech. Anal., Vol. 11 (1962), p.415.

Google Scholar

[2] S. Dasgupta and D. Sengupta: Int. J. Numer. Meth. Engng., Vol. 30 (1990), p.419.

Google Scholar

[3] E. Amanatidou and N. Aravas: Comput. Meth. Appl. Mech. Engrg., Vol. 191 (2002), p.1723.

Google Scholar

[4] T. Belytschko, Y.Y. Lu and L. Gu: Int. J. Numer. Meth. Engng., Vol. 37 (1994), p.229.

Google Scholar

[5] S.N. Atluri and T. Zhu: Comput. Mech., Vol. 22 (1998), p.117.

Google Scholar

[6] W.K. Liu, S. Jun and Y.F. Zhang: Int. J. Numer. Meth. Flu., Vol. 20 (1995), p.1081.

Google Scholar

[7] N. Sukumar and B. Moran: Numer. Meth. Part. Diff. Eq., Vol. 15 (1999), p.417.

Google Scholar

[8] N. Sukumar, B. Moran and T. Belytschko: Int. J. Numer. Meth. Engng., Vol. 43 (1998), p.839.

Google Scholar

[9] G. Farin: Comput. Aided Geom. Des., Vol. 7 (1990), p.281.

Google Scholar

[10] Z.F. Nie: C1 Natural Element Method for Strain Gradient Elasticity and its Application to Microstructures (Ph.D., Shandong University, China 2010), p.33. (In Chinese)

Google Scholar

[11] R.D. Mindlin: Exp. Mech., Vol. 3 (1962), p.1.

Google Scholar