[1]
G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science, vol. 270, Dec 1995, pp.1789-1791.
DOI: 10.1126/science.270.5243.1789
Google Scholar
[2]
C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Plastic Solar Cells, Adv. Funct. Mater., vol. 11, Feb 2001, pp.15-26, doi: 10. 1002/1616-3028(200102)11: 1<15: AID-ADFM15>3. 0. CO; 2-A.
DOI: 10.1002/1616-3028(200102)11:1<15::aid-adfm15>3.0.co;2-a
Google Scholar
[3]
K. Kawanoa, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, and J. R. Durrant, Degradation of Organic Solar Cells due to Air Exposure, Sol. Energy Mater. Sol. Cells, vol. 90, Dec 2006, pp.3520-3530, doi: 10. 1016/j. solmat. 2006. 06. 041.
DOI: 10.1016/j.solmat.2006.06.041
Google Scholar
[4]
M. Jørgensen, K. Norrman, and F. C. Krebs, Stability/Degradation of Polymer Solar Cells, Sol. Energy Mater. Sol. Cells, vol. 92, July 2008, pp.686-714, doi: 10. 1016/j. solmat. 2008. 01. 005.
DOI: 10.1016/j.solmat.2008.01.005
Google Scholar
[5]
M.O. Reese, A.J. Morfa, M.S. White, N. Kopidakis, S.E. Shaheen, G. Rumbles and D.S. Ginley, Pathways for the Degradation of Organic Photovoltaic P3HT: PCBM based Devices, Sol. Energy Mater. Sol. Cells, vol. 92, July 2008, pp.746-752.
DOI: 10.1016/j.solmat.2008.01.020
Google Scholar
[6]
B. Paci, A. Generosi, V. Rossi Albertini, P. Perfetti, R. de Bettignies, and C. Sentein, Time-resolved Morphological Study of Organic Thin Film Solar Cells based on Calcium/aluminium Cathode Material, Chem. Phys. Lett., vol. 461, August 2008, pp.77-81.
DOI: 10.1016/j.cplett.2008.06.070
Google Scholar
[7]
K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto, Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices, J. Phys. Chem. C, vol. 111, April 2007, pp.7218-7223, doi: 10. 1021/jp071418n.
DOI: 10.1021/jp071418n
Google Scholar
[8]
C. Y. Chou, J. S. Huang, C. H. Wu, C. Y. Lee, C. F. Lin, Lengthening the Polymer Solidification Time to Improve the Performance of Polymer/ZnO Nanorod Hybrid Solar Cells, Sol. Energy Mater. Sol. Cells, vol. 93, Sept 2009, pp.1608-1612.
DOI: 10.1016/j.solmat.2009.04.016
Google Scholar
[9]
L. Vayssieres, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater., vol. 15, March 2003, pp.464-466, doi: 10. 1002/adma. 200390108.
DOI: 10.1002/adma.200390108
Google Scholar
[10]
M. Guo, P. Diao, and S. M. Cai, Hydrothermal Growth of Well-Aligned ZnO Nanorod Arrays: Dependence of Morphology and Alignment Ordering upon Preparing Conditions, J. Solid State Chem., vol. 178, June 2005, pp.1864-1873.
DOI: 10.1016/j.jssc.2005.03.031
Google Scholar
[11]
M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nanowire Dye-sensitized Solar Cells, Nat. Mater., vol. 4, June 2005, pp.455-459, doi: 10. 1038/nmat1387.
DOI: 10.1038/nmat1387
Google Scholar
[12]
C. Le´vy-Cle´ment, R. Tena-Zaera, M. A. Ryan, A. Katty, and G. Hodes, CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterojunctions, Adv. Mater., vol. 17, Jun 2005, pp.1512-1515, doi: 10. 1002/adma. 200401848.
DOI: 10.1002/adma.200401848
Google Scholar
[13]
R. Thitima, C. Patcharee, S. Takashi, and Y. Susumu, Efficient Electron Transfers in ZnO Nanorod Arrays with N719 Dye for Hybrid Solar Cells, Solid State Electron., vol. 53, Feb 2009, pp.176-780, doi: 10. 1016/j. sse. 2008. 10. 014.
DOI: 10.1016/j.sse.2008.10.014
Google Scholar
[14]
Y. Y. Lin, Y. Y. Lee, L. W. Chang, J. J. Wu, and C. W. Chen, The Influence of Interface Modifier on the Performance of Nanostructured ZnO/polymer Hybrid Solar Cells, Appl. Phys. Lett., vol. 94, Feb 2009, p.063308, doi: 10. 1063/1. 3080203.
DOI: 10.1063/1.3080203
Google Scholar
[15]
W. J. Lee, H. Okada, A. Wakahara, and A. Yoshida, Structural and Photoelectrochemical Characteristics of Nanocrystalline ZnO Electrode with Eosin-Y, Ceram. Int., Vol. 32, 2006, pp.495-498, doi: 10. 1016/j. ceramint. 2005. 03. 030.
DOI: 10.1016/j.ceramint.2005.03.030
Google Scholar
[16]
S. Choopun, A. Tubtimtae, T. Santhaveesuk, S. Nilphai, E. Wongrat, and N. Hongsith, Zinc Oxide Nanostructures for Applications as Ethanol Sensors and Dye-sensitized Solar Cells, Appl. Surf. Sci., vol. 256, Nov 2009, pp.998-1002.
DOI: 10.1016/j.apsusc.2009.05.139
Google Scholar
[17]
B. Postels, A. Kasprzak, T. Buergel, A. Bakin, E. Schlenker, H. H. Wehmann, and A. Waag, Dye-Sensitized Solar Cells on the Basis of ZnO Nanorods, J. Korean Phys. Soc., vol. 53, July 2008, pp.115-118, doi: 10. 3938/jkps. 53. 115.
DOI: 10.3938/jkps.53.115
Google Scholar
[18]
M. Quintana, T. Marinado, K. Nonomura, G. Boschloo, and A. Hagfeldt, Organic Chromophore-sensitized ZnO Solar Cells: Electrolyte-dependent Dye Desorption and Band-edge Shifts, J. Photochem. Photobiol. A: Chem., vol. 202, Feb 2009, pp.159-163.
DOI: 10.1016/j.jphotochem.2008.11.024
Google Scholar
[19]
A. Ghicov, S. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, C. A. Schiller, P. Falaras, and P. Schmuki, TiO2 Nanotubes in Dye-Sensitized Solar Cells: Critical Factors for the Conversion Efficiency, Chem. Asian J., vol. 4, April 2009, pp.520-525.
DOI: 10.1002/asia.200800441
Google Scholar