[1]
M. H. Lee and H.R. Nicholls, Review Article Tactile sensing for mechatronics-a state of the art survey. Mechatronics, 1999. 9(1): pp.1-31.
DOI: 10.1016/s0957-4158(98)00045-2
Google Scholar
[2]
K. Kim, e. a., A silicon-based flexible tactile sensor for ubiquitous robot companion applications Journal of Physics: Conference Series, 2006. 34: pp.399-403.
Google Scholar
[3]
M. Inaba, et al., A full-body tactile sensor suit using electrically conductive fabric and strings. Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 1996: pp.450-457.
DOI: 10.1109/iros.1996.570816
Google Scholar
[4]
Y. Ohmura, Y. Kuniyoshi, and A. Nagakubo, Conformable and scalable tactile sensor skin for curved surfaces. Proceeding of 2006 IEEE International Conference on Robotics and Automation. Orlando, Florida., 2006: pp.1348-1353.
DOI: 10.1109/robot.2006.1641896
Google Scholar
[5]
V. J. Lumelsky, M.S. Shur, and Sigurd Wagner, Sensitive skin. IEEE SENSORS JOURNAL, 2001. 1(1): pp.41-50.
Google Scholar
[6]
Y. Kuniyoshi, et al., Dynamic Roll-and-Rise Motion by an Adult-Size Humanoid Robot. International Journal of Humanoid Robotics, 2004. I(3): pp.497-516.
DOI: 10.1142/s021984360400023x
Google Scholar
[7]
K. Takashima, e. a., Piezoelectric properties of vinylidene fluoride oligomer for use in medical tactile sensor applications. Sensors and Actuators A, 2008. 144: pp.90-96.
DOI: 10.1016/j.sna.2008.01.015
Google Scholar
[8]
S. Takenawa, A magnetic type tactile sensor using a two-dimensional array of inductors. IEEE International Conference on Robotics and Automation Kobe, Japan, 2009: pp.3295-3300.
DOI: 10.1109/robot.2009.5152420
Google Scholar
[9]
M. Y. Cheng, et al., A flexible tactile sensing array based on novel capacitance mechanism. IEEE Transducers 2009, Denver, CO, USA, 2009: pp.2182-2185.
Google Scholar
[10]
G. Harsaanyi, Polymer films in sensor applications: a review of present uses and future possibilities. Sensor Review, 2000. 20(2): pp.98-105.
DOI: 10.1108/02602280010319169
Google Scholar
[11]
R.H. Norman, Conductive Rubber and Plastics 1970, London: Elsevier.
Google Scholar
[12]
F. G. Souza, R. C. Michel, and B. G. Soares, A methodology for studying the dependence of electrical resistivity with pressure in conducting composites. Polymer Testing, 2005. 24: pp.998-1004.
DOI: 10.1016/j.polymertesting.2005.08.001
Google Scholar
[13]
Y.J. Yang, et al., A 32×32 temperature and tactile sensing array using PI-copper films. Int J Adv Manuf Technol, 2010. 46: pp.945-956.
DOI: 10.1007/s00170-009-1940-z
Google Scholar
[14]
X. Niu, et al., Characterizing and patterning of pdms-based conducting composites. Advanced Materials, 2007. 19: pp.2682-2686.
DOI: 10.1002/adma.200602515
Google Scholar
[15]
Q. W. Yuan, et al., Simulations on the reinforcement of poly(dimethylsiloxane) elastomers by randomly distributed filler particles. Journal of Polymer Science Part B: Polymer Physics, 1996. 34(9): pp.1647-1657.
DOI: 10.1002/(sici)1099-0488(19960715)34:9<1647::aid-polb14>3.0.co;2-7
Google Scholar
[16]
V. Duchaine, et al., A Flexible Robot Skin for Safe Physical Human Robot Interaction IEEE International Conference on Robotics and Automation Kobe, Japan., 2009: pp.3676-3681.
DOI: 10.1109/robot.2009.5152595
Google Scholar
[17]
M. Shimojo, et al., A system for simultanious measuring grasping posture and pressure distribution. Proc. IEEE Int. Conf. Robotics and Automation, Nagoya, Japan, 1995: pp.831-836.
Google Scholar
[18]
K. Weiss and H. Wörn, The Working Principle of Resistive Tactile Sensor Cells. Proceedings of the IEEE International Conference on Mechatronics & Automation Niagara Falls, Canada 2005: pp.471-476.
DOI: 10.1109/icma.2005.1626593
Google Scholar
[19]
R. Strumpler and J. Glatz-Reichenbach, Conducting Polymer Composites. Journal of Electroceramics, 1999. 3(4): pp.329-346.
Google Scholar
[20]
F. Carmona, Conducting filled polymers. Physica A: Statistical Mechanics and its Applications, 1989. 157(1): pp.461-469.
DOI: 10.1016/0378-4371(89)90344-0
Google Scholar
[21]
W. Luheng, D. Tianhuai, and W. Peng, Effects of conductive phase content on critical pressure of carbon black filled silicone rubber composite. Sensors and Actuators A: Physical, 2007. 135(2): pp.587-592.
DOI: 10.1016/j.sna.2006.10.019
Google Scholar
[22]
L. K. H. Beek and B. I. C. F. van Pul, Internal field emission in carbon black-loaded natural rubber vulcanizates. Journal of Applied Polymer Science, 1962. 6(24): pp.651-655.
DOI: 10.1002/app.1962.070062408
Google Scholar
[23]
D. Bloor, et al., A metal–polymer composite with unusual properties. J. Phys. D: Appl. Phys., 2005. 38: pp.2851-2860.
Google Scholar
[24]
F. G. Chang, et al., Enhanced piezoresistivity in Ni–silicone rubber composites. Chinese physics B, 2009. 18(2): pp.652-657.
DOI: 10.1088/1674-1056/18/2/043
Google Scholar
[25]
X.W. Zhang, Z. P. Y, and X Q. Yi, Time dependence of piezoresistance for the conductor-filled polymer composites. J Polym Sci Part B: Polym Phys, 2000. 38(21): pp.2739-2749.
DOI: 10.1002/1099-0488(20001101)38:21<2739::aid-polb40>3.0.co;2-o
Google Scholar
[26]
W. Luheng, D. Tianhuai, and W. Peng, Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite. Carbon, 2009. 47(14): pp.3151-3157.
DOI: 10.1016/j.carbon.2009.06.050
Google Scholar
[27]
UK, P.L., Patent PCT/GB98/00206 (WO 98/33193).
Google Scholar
[28]
C. J. Edgcombe and U. Valdrè, Microscopy and computational modelling to elucidate the enhancement factor for field electron emitters. Journal of Microscopy, 2001. 203: pp.188-194.
DOI: 10.1046/j.1365-2818.2001.00890.x
Google Scholar
[29]
M.K. Abyaneh and S.K. Kulkarni, Giant piezoresistive response in zinc–polydimethylsiloxane composites under uniaxial pressure. J. Phys. D: Appl. Phys., 2008. 41: p.135405.
DOI: 10.1088/0022-3727/41/13/135405
Google Scholar
[30]
D. Toker, et al., Tunneling and percolation in metal-insulator composite materials. Phisical Review B 2003. 68(041403).
Google Scholar
[31]
F. M. Sasoglu, A. J Bohl, and B. E. Layton, Design and microfabrication of a high-aspect-ratio PDMS microbeam array for parallel nanonewton force measurement and protein printing. J. Micromech. Microeng. 17, 2007. 17: pp.623-632.
DOI: 10.1088/0960-1317/17/3/027
Google Scholar
[32]
F. M. Sasoglu, A J Bohl, and B. E. Layton, Design and microfabrication of a high-aspect-ratio PDMS microbeam array for parallel nanonewton force measurement and protein printing. J. Micromech. Microeng., 2007. 17: pp.623-632.
DOI: 10.1088/0960-1317/17/3/027
Google Scholar