Comprehensive Characterization of Large Piezoresistive Variation of Ni-PDMS Composites

Article Preview

Abstract:

This work presents a comprehensive investigation of the piezoresistive response of a metal-polymer composite for robotic tactile sensor application. Composite samples, based on nickel nanostructured conductive filler in a polydimetihylsiloxane (PDMS) insulating elastomeric matrix, were prepared changing several process parameters like thickness, composition of the polymer and nickel filler content. A variation of electric resistance up to nine orders of magnitude under applied uniaxial load was measured in the fabricated samples. Cost efficient materials, simplicity of the process, large sensibility, and harsh environment compatibility make this quantum tunnelling composite adapted to be integrated as sensing coating in space robotic applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1336-1344

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. H. Lee and H.R. Nicholls, Review Article Tactile sensing for mechatronics-a state of the art survey. Mechatronics, 1999. 9(1): pp.1-31.

DOI: 10.1016/s0957-4158(98)00045-2

Google Scholar

[2] K. Kim, e. a., A silicon-based flexible tactile sensor for ubiquitous robot companion applications Journal of Physics: Conference Series, 2006. 34: pp.399-403.

Google Scholar

[3] M. Inaba, et al., A full-body tactile sensor suit using electrically conductive fabric and strings. Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 1996: pp.450-457.

DOI: 10.1109/iros.1996.570816

Google Scholar

[4] Y. Ohmura, Y. Kuniyoshi, and A. Nagakubo, Conformable and scalable tactile sensor skin for curved surfaces. Proceeding of 2006 IEEE International Conference on Robotics and Automation. Orlando, Florida., 2006: pp.1348-1353.

DOI: 10.1109/robot.2006.1641896

Google Scholar

[5] V. J. Lumelsky, M.S. Shur, and Sigurd Wagner, Sensitive skin. IEEE SENSORS JOURNAL, 2001. 1(1): pp.41-50.

Google Scholar

[6] Y. Kuniyoshi, et al., Dynamic Roll-and-Rise Motion by an Adult-Size Humanoid Robot. International Journal of Humanoid Robotics, 2004. I(3): pp.497-516.

DOI: 10.1142/s021984360400023x

Google Scholar

[7] K. Takashima, e. a., Piezoelectric properties of vinylidene fluoride oligomer for use in medical tactile sensor applications. Sensors and Actuators A, 2008. 144: pp.90-96.

DOI: 10.1016/j.sna.2008.01.015

Google Scholar

[8] S. Takenawa, A magnetic type tactile sensor using a two-dimensional array of inductors. IEEE International Conference on Robotics and Automation Kobe, Japan, 2009: pp.3295-3300.

DOI: 10.1109/robot.2009.5152420

Google Scholar

[9] M. Y. Cheng, et al., A flexible tactile sensing array based on novel capacitance mechanism. IEEE Transducers 2009, Denver, CO, USA, 2009: pp.2182-2185.

Google Scholar

[10] G. Harsaanyi, Polymer films in sensor applications: a review of present uses and future possibilities. Sensor Review, 2000. 20(2): pp.98-105.

DOI: 10.1108/02602280010319169

Google Scholar

[11] R.H. Norman, Conductive Rubber and Plastics 1970, London: Elsevier.

Google Scholar

[12] F. G. Souza, R. C. Michel, and B. G. Soares, A methodology for studying the dependence of electrical resistivity with pressure in conducting composites. Polymer Testing, 2005. 24: pp.998-1004.

DOI: 10.1016/j.polymertesting.2005.08.001

Google Scholar

[13] Y.J. Yang, et al., A 32×32 temperature and tactile sensing array using PI-copper films. Int J Adv Manuf Technol, 2010. 46: pp.945-956.

DOI: 10.1007/s00170-009-1940-z

Google Scholar

[14] X. Niu, et al., Characterizing and patterning of pdms-based conducting composites. Advanced Materials, 2007. 19: pp.2682-2686.

DOI: 10.1002/adma.200602515

Google Scholar

[15] Q. W. Yuan, et al., Simulations on the reinforcement of poly(dimethylsiloxane) elastomers by randomly distributed filler particles. Journal of Polymer Science Part B: Polymer Physics, 1996. 34(9): pp.1647-1657.

DOI: 10.1002/(sici)1099-0488(19960715)34:9<1647::aid-polb14>3.0.co;2-7

Google Scholar

[16] V. Duchaine, et al., A Flexible Robot Skin for Safe Physical Human Robot Interaction IEEE International Conference on Robotics and Automation Kobe, Japan., 2009: pp.3676-3681.

DOI: 10.1109/robot.2009.5152595

Google Scholar

[17] M. Shimojo, et al., A system for simultanious measuring grasping posture and pressure distribution. Proc. IEEE Int. Conf. Robotics and Automation, Nagoya, Japan, 1995: pp.831-836.

Google Scholar

[18] K. Weiss and H. Wörn, The Working Principle of Resistive Tactile Sensor Cells. Proceedings of the IEEE International Conference on Mechatronics & Automation Niagara Falls, Canada 2005: pp.471-476.

DOI: 10.1109/icma.2005.1626593

Google Scholar

[19] R. Strumpler and J. Glatz-Reichenbach, Conducting Polymer Composites. Journal of Electroceramics, 1999. 3(4): pp.329-346.

Google Scholar

[20] F. Carmona, Conducting filled polymers. Physica A: Statistical Mechanics and its Applications, 1989. 157(1): pp.461-469.

DOI: 10.1016/0378-4371(89)90344-0

Google Scholar

[21] W. Luheng, D. Tianhuai, and W. Peng, Effects of conductive phase content on critical pressure of carbon black filled silicone rubber composite. Sensors and Actuators A: Physical, 2007. 135(2): pp.587-592.

DOI: 10.1016/j.sna.2006.10.019

Google Scholar

[22] L. K. H. Beek and B. I. C. F. van Pul, Internal field emission in carbon black-loaded natural rubber vulcanizates. Journal of Applied Polymer Science, 1962. 6(24): pp.651-655.

DOI: 10.1002/app.1962.070062408

Google Scholar

[23] D. Bloor, et al., A metal–polymer composite with unusual properties. J. Phys. D: Appl. Phys., 2005. 38: pp.2851-2860.

Google Scholar

[24] F. G. Chang, et al., Enhanced piezoresistivity in Ni–silicone rubber composites. Chinese physics B, 2009. 18(2): pp.652-657.

DOI: 10.1088/1674-1056/18/2/043

Google Scholar

[25] X.W. Zhang, Z. P. Y, and X Q. Yi, Time dependence of piezoresistance for the conductor-filled polymer composites. J Polym Sci Part B: Polym Phys, 2000. 38(21): pp.2739-2749.

DOI: 10.1002/1099-0488(20001101)38:21<2739::aid-polb40>3.0.co;2-o

Google Scholar

[26] W. Luheng, D. Tianhuai, and W. Peng, Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite. Carbon, 2009. 47(14): pp.3151-3157.

DOI: 10.1016/j.carbon.2009.06.050

Google Scholar

[27] UK, P.L., Patent PCT/GB98/00206 (WO 98/33193).

Google Scholar

[28] C. J. Edgcombe and U. Valdrè, Microscopy and computational modelling to elucidate the enhancement factor for field electron emitters. Journal of Microscopy, 2001. 203: pp.188-194.

DOI: 10.1046/j.1365-2818.2001.00890.x

Google Scholar

[29] M.K. Abyaneh and S.K. Kulkarni, Giant piezoresistive response in zinc–polydimethylsiloxane composites under uniaxial pressure. J. Phys. D: Appl. Phys., 2008. 41: p.135405.

DOI: 10.1088/0022-3727/41/13/135405

Google Scholar

[30] D. Toker, et al., Tunneling and percolation in metal-insulator composite materials. Phisical Review B 2003. 68(041403).

Google Scholar

[31] F. M. Sasoglu, A. J Bohl, and B. E. Layton, Design and microfabrication of a high-aspect-ratio PDMS microbeam array for parallel nanonewton force measurement and protein printing. J. Micromech. Microeng. 17, 2007. 17: pp.623-632.

DOI: 10.1088/0960-1317/17/3/027

Google Scholar

[32] F. M. Sasoglu, A J Bohl, and B. E. Layton, Design and microfabrication of a high-aspect-ratio PDMS microbeam array for parallel nanonewton force measurement and protein printing. J. Micromech. Microeng., 2007. 17: pp.623-632.

DOI: 10.1088/0960-1317/17/3/027

Google Scholar