[1]
J. E. Bobrow, S. Dubowsky, and J. S. Gibson, Time-optimal control of robotic manipulators along specified paths, The International Journal of Robotics Research, vol. 4 no. 3, pp.3-17, September 1985, doi: 10. 1177/027836498500400301.
DOI: 10.1177/027836498500400301
Google Scholar
[2]
K. G. Shin and N. D. McKay, Minimum-time control of robotic manipulators with geometric path-constraints, IEEE Transactions on Automatic Control, vol. 30, no. 6, p.531–541, Jun 1985, doi: 10. 1109/TAC. 1985. 1104009.
DOI: 10.1109/tac.1985.1104009
Google Scholar
[3]
Pfeiffer and R. Johanni, A concept for manipulator trajectory planning, IEEE Journal of Robotics and Automation, vol. 3, no. 2 , p.115–123, April 1987, doi: 10. 1109/JRA. 1987. 1087090.
DOI: 10.1109/jra.1987.1087090
Google Scholar
[4]
Y. Chen and A. A. Desrochers, Structure of minimum time control law for robotic manipulators with constrained paths, Proc. IEEE International Conference on Robotics and Automation, IEEE Press, May 1989, pp.970-975.
DOI: 10.1109/robot.1989.100107
Google Scholar
[5]
L. Zlajpah, on time optimal path control of manipulators with bounded joint velocities and torques, Proc. IEEE International Conference on Robotics and Automation, IEEE Press, Apr. 1996, p.1572–1577, doi: 10. 1109/ROBOT. 1996. 506928.
DOI: 10.1109/robot.1996.506928
Google Scholar
[6]
S. D. Timar, R. T. Farouki, and T. S. Smith, C. L. Boyadjieff, Algorithms for time-optimal control of CNC machines along curved tool paths, Robotics and Computer-Integrated Manufacturing, vol. 21, no. 1, Feb. 2005, p.37.
DOI: 10.1016/j.rcim.2004.05.004
Google Scholar
[7]
J. Mattmüller and D. Gisler, Calculating a near time-optimal jerk-constrained trajectory along a specified smooth path, International Journal of Advanced Manufacturing Technology, vol. 45 no. 9-10, p.1007.
DOI: 10.1007/s00170-009-2032-9
Google Scholar
[8]
M. J. Sadigh and M. H. Ghasemi, A Direct Algorithm to Compute the Switching Curve for Time-Optimal Motion of Cooperative Multi-Manipulators Moving on a Specified Path, Advanced Robotics, vol. 22, no. 5, pp.493-506.
DOI: 10.1163/156855308x294851
Google Scholar
[9]
S. Ma and M. Watanabe, Minimum time path-tracking control of redundant manipulators, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IEEE Press, Nov. 2000, vol. 1, p.27–32 doi: 10. 1109/IROS. 2000. 894577.
DOI: 10.1109/iros.2000.894577
Google Scholar
[10]
S. Ma and M. Watanabe, Time optimal path-tracking control of kinematically redundant manipulators, JSME Int. J. C. Mech. Syst. Mach. Elem. Manuf. Vol. 47, no. 2, p.582–590, 2004, doi: 10. 1299/jsmec. 47. 582.
DOI: 10.1299/jsmec.47.582
Google Scholar
[11]
S. Ma and M. Watanabe, Minimum-time control of coupled tendon-driven manipulators, Advanced Robotics, vol. 15, no. 4, pp.409-427, 2001, doi: 10. 1163/156855301750398338.
DOI: 10.1163/156855301750398338
Google Scholar
[12]
S. Ma and M. Watanabe, Time-optimal control of kinematically redundant manipulators with limit heat characteristics of actuators, Advanced Robotics, vol. 16, no. 8, pp.735-749, 2002, doi: 10. 1163/15685530260425729.
DOI: 10.1163/15685530260425729
Google Scholar
[13]
M. Galicki, Time-optimal controls of kinematically redundant manipulators with geometric constraints, IEEE Transactions on Robotics and Automation, vol. 16, no. 1, p.89–93, Feb. 2000, doi: 10. 1109/70. 833194.
DOI: 10.1109/70.833194
Google Scholar