[1]
K. J. Lee, and J.R. Barber, An experimental investigation of frictionally-excited thermoelastic instability in automotive disk brakes under a drag brake application, ASME J. Tribol. vol. 116, pp.409-414, (1994).
DOI: 10.1115/1.2928855
Google Scholar
[2]
Altuzarra, E. Amezua, R. Aviles, and A. Hernandez, Judder vibration in disc brakes excited by thermoelastic instability, Eng. Comp., vol. 19, pp.411-430, (2002).
DOI: 10.1108/02644400210430181
Google Scholar
[3]
Y. H. Jang, and S. H. Ahn, Frictionally-excited thermoelastic instability in functionally graded material, Wear, vol. 262, pp.1102-1112, (2007).
DOI: 10.1016/j.wear.2006.11.011
Google Scholar
[4]
B. Y. Yi, J. R. Barber, and P. Zagrodzki, Eigenvalue solution of thermoelastic instability problems using Fourier reduction, Proc. R. Soc. London A, vol. 456, pp.2799-2821, (2000).
DOI: 10.1098/rspa.2000.0641
Google Scholar
[5]
J. R. Barber, Thermoelastic instabilities in the sliding of conforming solids, Proc. R. Soc. London A, vol. 312, pp.381-398, (1969).
DOI: 10.1098/rspa.1969.0165
Google Scholar
[6]
R. A. Burton, V. Nerlikar, and S. R. Kilaparti, Thermoelastic instability in a seal-like configuration, Wear, vol. 24, pp.177-188, (1973).
DOI: 10.1016/0043-1648(73)90230-5
Google Scholar
[7]
Y. B. Yi, S. Du, J. R. Barber, and J. W. Fash, Effect of geometry on thermoelastic instability in disk brakes and clutches, ASME J. Tribol, vol. 121, pp.661-666, (1999).
DOI: 10.1115/1.2834120
Google Scholar
[8]
K. J. Lee, and J. R. Barber, Frictionally excited thermoelastic instability in automotive disk brakes, ASME J. Tribol, vol. 115, pp.607-614, (1993).
DOI: 10.1115/1.2921683
Google Scholar
[9]
P. Zagrodzki, K. B. Lam, E. Al Bahkali, and J. R. Barber, Nonlinear transient behavior of a sliding system with frictionally excited thermoelastic instability, ASME J. Tribol, vol. 123, pp.699-708, (2001).
DOI: 10.1115/1.1353180
Google Scholar
[10]
J. H. Choi, and I. Lee, Transient thermoelastic analysis of disk brakes in frictional contact, J. Ther. Str, vol. 26, pp.223-244, (2003).
DOI: 10.1080/713855891
Google Scholar
[11]
S. H. Ahn, and Y. H. Jang, Frictionally excited thermo-elastoplastic instability, Tribol. Int., vol. 43, pp.779-784, (2010).
DOI: 10.1016/j.triboint.2009.11.002
Google Scholar
[12]
J. Li, and J.R. Barber, Solution of transient thermoelastic contact problems by the fast speed expansion method, Wear, vol. 265, pp.402-410, (2008).
DOI: 10.1016/j.wear.2007.11.010
Google Scholar
[13]
S. Du, and J. W. Fash, Finite element analysis of frictionally-excited thermoelastic instability in 3D annular disk, Int. J. Vehi. Desi., vol. 23, pp.203-217, (2000).
DOI: 10.1504/ijvd.2000.001892
Google Scholar
[14]
G. H. Yoon, and O. Sigmund, A monolithic approach for topology optimization of electrostatically actuated devices, Comp. Meth. Appl. Mech. Engi., vol. 197, pp.4062-4075, (2008).
DOI: 10.1016/j.cma.2008.04.004
Google Scholar
[15]
Cardona, An integrated approach to mechanism analysis, Ph.D. Dissertation, University of Liege, Belgium, (1989).
Google Scholar
[16]
M. Geradin, and A. Cardona, Flexible multibody dynamics, John Willey & Sons, Chichester, England, (2000).
Google Scholar
[17]
D. B. Doan, Modeling and analysis of landing gears, Ph.D. Dissertation, University of Liege, Belgium, (2004).
Google Scholar
[18]
S. M. Kim, A study on thermal analysis in entilated disk brake by FEM, J. Kor. Soci. Mach. Tool Engi., vol. 18, pp.544-549, (2009).
Google Scholar