[1]
Wang CH, Introduction to fracture mechanics. Aeromautical and maritime research laboratory, Melbourne: Victoria, (1996).
Google Scholar
[2]
Griffith AA, The phenomena of rupture and flow in solids, J Phil Trans Roy Soc (London) 1921; 221: 163-198.
Google Scholar
[3]
Orowan E, Energy criteria of fracture, Welding Journal. 1955; 34: 157-160.
Google Scholar
[4]
Irwin GR, Washigton DC, Analysis of stresses and strains near the end of a crack traversing a plate, J ASME Appl Mech 1956; 57: 361-364.
DOI: 10.1115/1.4011772
Google Scholar
[5]
Edmunds TM, Willis JR. Matched asymptotic expansions in nonlinear fracture mechanics-III. In-plane loading of an elastic perfectly-plastic symmetric specimen. J Mech Phys Solids 1977; 25: 423-455.
DOI: 10.1016/0022-5096(77)90028-x
Google Scholar
[6]
Guo QX, Li KR, The dimension of plastic zone ahead of a mode II plane stress crac, Eng Frac Mech 1988; 29: 107-122.
Google Scholar
[7]
Mishra SC, Parida BK, A study of crack-tip plastic zone by elastoplastic finite element analysi, Eng Frac Mech 1985; 22: 951-956.
DOI: 10.1016/0013-7944(85)90035-9
Google Scholar
[8]
Yates JR, Zanganech M, Tomlinson RA, Brown MW, Diaz Garrido FA, Crack paths under mixed mode loading, Eng Frac Mech 2008; 75: 319-330.
DOI: 10.1016/j.engfracmech.2007.05.014
Google Scholar
[9]
Banks TM, Garlick A, The form of crack tip plastic zones, J Eng Fract Mech 1984; 19: 571-581.
DOI: 10.1016/0013-7944(84)90012-2
Google Scholar
[10]
Harmain GA, Provan JW, Fatigue crack tip plasticity revisited-the issue of shape addressed, J Theor Appl Fract Mech 1997; 26: 63-79.
DOI: 10.1016/s0167-8442(96)00036-5
Google Scholar
[11]
Hahn GA, Sarrate M, Rosenfield AR Plastic zones in Fe-3Si steel double-cantilever- beam specimens. Int. J. Frac. Mech 1971; 7: 435-48.
DOI: 10.1007/bf00189113
Google Scholar
[12]
Guerra-Rosa L, Moura Branco, C., Radon, J.C., Monotonic and cyclic crack tip plasticity, Int J fatigue 1984; 6: 17-26.
Google Scholar
[13]
Mishra SC, Parda BK, Determination of the size of crack-tip plastic zone in a thin sheet under uniaxial loading, Eng Frac Mech 1985; 22: 351-357.
DOI: 10.1016/0013-7944(85)90136-5
Google Scholar
[14]
Zhao DW, Fang Q, Liu XH, Wang GD, A Linear Yield Criterion whose Covered Area Equal to that of Mises Yield Loci on the π-Plane in Haigh Westergaard Stress Space, J Northeastern University (natural science). 2004, 26: 248-232. (in chinese).
Google Scholar
[15]
Yu MH, Advances in strength theories for materials under complex stress state in the 20th century, J. ASME 2002; 55: 169-219.
Google Scholar
[16]
Khan MAS, Khaisheh MK, Analysis of mixed mode crack initation angles under various loading conditions, J. Eng. Fract. Mech., 2000; 67: 397-419.
DOI: 10.1016/s0013-7944(00)00068-0
Google Scholar
[17]
Andersson H, Analysis of a model for void growth and coalescence ahead of a moving crack tip, J Mech Phys Solid 1977; 25: 217-233.
DOI: 10.1016/0022-5096(77)90024-2
Google Scholar
[18]
Lin X, Fong Shih C, Ductile crack growth-I. a numerical study using computational cells with microstructurally-based length scales, J Mech Phys Solid 1995; 43: 233-59.
DOI: 10.1016/0022-5096(94)00064-c
Google Scholar