Study of Self Phase Modulation in Chalcogenide Glass Photonic Crystal Fiber

Article Preview

Abstract:

In this paper, Self Phase Modulation (SPM) in chalcogenide As2Se3 glass Photonic Crystal Fiber (PCF) is numerically studied by combining the fully vectorial effective index method (FVEIM) and Split Step Fourier Method (SSFM). The FVEIM is used to calculate the variation of effective refractive index of guided mode (neff), effective area (Aeff), dispersion and non-linear coefficient (γ) with wavelength for different designs of chalcogenide As2Se3 PCF. The FVEIM solves the vector wave equations and SSFM solves non linear Schrödinger Equation (NLSE) for the different designing parameter of As2Se3 PCF. In case of Self Phase Modulation (SPM), spectral width of the obtained output pulse at d/Λ=0.7 is 1.5 times greater than width of the output pulse obtained at d/L=0.3 using SSFM. Thus we can get the desired spectral broadening just by tailoring the design parameters of the PCF.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-56

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Yablonovitch : Physical. Review Letter Vol. 58 (1987), p.2059–(2062).

Google Scholar

[2] J. C. Knight, T. A. Birks, P. St.J. Russell and D. M. Atkin : Opt. Lett. Vol. 21 (1996), p.1547–1549.

Google Scholar

[3] R. K. Sinha, S. K. Varshney : Microwave Opt. Technol. Lett. Vol. 37 (2003), pp.129-132.

Google Scholar

[4] Anshu D Varshney and R. K. Sinha, : Appl. Opt. Vol. 46 (2007), pp.5912-5916.

Google Scholar

[5] W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor: Nature. Vol. 424 (2003), pp.511-515.

DOI: 10.1038/nature01798

Google Scholar

[6] F. Brechet, J. Marcou, D. Pagnoux, and P. Roy : Opt. Fiber Technol. Vol. 6 (2000), pp.181-191.

Google Scholar

[7] S. K. Varshney, M. P. Singh, R. K. Sinha :J. of Opt. Commun. Vol. 24 (2003), p.856.

Google Scholar

[8] R.K. Sinha, Anshu D. Varshney : Opt. Quantum Electron. Vol. 37 (2005), pp.711-722.

Google Scholar

[9] Y. Li, C. Wang, and M. Hu : Opt. Commun. Vol. 238 (2004), p.29–33.

Google Scholar

[10] Vasantha Jayakantha Raja and K. Porsezian : Photonics and Nanostructures. Vol. 5 (2007), pp.171-177.

Google Scholar

[11] Bhawana Dabas, R.K. Sinha : Opt. Commun. 284 (2010), 1186-1191.

Google Scholar

[12] Bhawana Dabas, R.K. Sinha : Opt. Commun. Vol. 283 (2010), pp.1331-1337.

Google Scholar

[13] Sourabh Roy and Partha Roy Chaudhuri : Opt. Commun., Vol. 282 ( 2009), pp.3448-3455.

Google Scholar

[14] S. K. Varshney, K. Saitoh, K. Iizawa, Y. Tsuchida, M. Koshiba, and R. K. Sinha : Opt. Exp. Vol. 33 (2008), pp.2431-2433.

Google Scholar

[15] E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton : Opt. Exp. Vol. 15 (2007), pp.10324-10329.

Google Scholar

[16] L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville : Opt. Exp. Vol. 14(2006), pp.1280-1285.

DOI: 10.1364/oe.14.001280

Google Scholar

[17] J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland and N. Traynor : IEEE J. Lightwave Technol. Vol. 27 (2009).

DOI: 10.1109/jlt.2009.2021672

Google Scholar

[18] Z B Wang, H Y Yang and Z Q Li : Conference Series, Vol. 48 (2006), p.878–882.

Google Scholar

[19] G. Boudebs et. al, Linear optical characterization of Chalcogenide glasses, Optics Comm., 230 (2004) 331–336.

DOI: 10.1016/j.optcom.2003.11.021

Google Scholar

[20] G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. San Diego, CA: Academic, (2007).

Google Scholar