Growth Mechanism of Hollow ZnO Microsphere with Aperture Prepared by Oxidation of Zn Powder

Article Preview

Abstract:

ZnO microsphere with aperture were synthesized using pure Zn powder as templates via thermal evaporation methods. X-ray diffraction pattern shows the change of crystal structures from Zn to ZnO. SEM and TEM images show that the samples prepared at low gas pressure have hollow ZnO microsphere with aperture. Compared with the morphologies of samples synthesized at high gas pressure, the growth mechanism of hollow ZnO microsphere with aperture is presumed in detail. The experimental results indicate that the evaporation of Zn inside the ZnO microsphere shell prompts the formation of hollow microsphere, and that the high pressure induces the breakage of weak locations to form the apertures, which eventually results in the appearance of ZnO microsphere with small pores and big apertures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1260-1263

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Liang, H. Sheng, Y. Liu. Z. Huo, Y. Lu, H. Shen: J. Cryst. Growth Vol. 225 (2001), p.110.

Google Scholar

[2] Q.H. Li, Q. Wang, Y.J. Chen, T.H. Wang, H.B. Jia, D.P. Yu: Appl. Phys. Lett Vol. 85 (2004), p.636.

Google Scholar

[3] N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, L. Sakaguchi, K. Koumoto: Adv. Mater Vol. 14 (2002), p.418.

Google Scholar

[4] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang: Nat. Mater Vol. 4 (2005), p.455.

Google Scholar

[5] O.A. Fouad: J. Nanosci. Nanotechnol Vol. 6 (2006), p.2090.

Google Scholar

[6] P.G. Ganesan, K. McGuire, H. Kim, N. Gothard, S. Mohan, A.M. Rao, G. Ramanath: J. Nanosci. Nanotechnol Vol. 5 (2005), p.1125.

Google Scholar

[7] J. Singh, R.S. Tiwari, O.N. Srivastava: J. Nanosci. Nanotechnol Vol. 7 (2007), p.1783.

Google Scholar

[8] J.Q. Hu, Y. Bando: Appl. Phys. Lett Vol. 82 (2003), p.1401.

Google Scholar

[9] Y. Liu, Y. Chu, Y. Zhuo, L. Dong, L. Li, M. Li: AdV. Funct. Mater Vol. 17 (2007), p.933.

Google Scholar

[10] A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, D.A. Weitz1: Science Vol. 298 (2002), p.1006.

Google Scholar

[11] K.M. Sulieman, X.T. Huang, J.P. Liu, M. Tang: Nanotechnology Vol. 17 (2006), p.4950.

Google Scholar

[12] H. Zhou, T.X. Fan, D. Zhang: Microporous Mesoporous Mat Vol. 100 (2007), p.322.

Google Scholar

[13] P.X. Gao, and Z.L. Wang: J. Am. Chem. Soc Vol. 125 (2003), p.11299.

Google Scholar

[14] G.Z. Shen, Y.S. Bando, C.J. Lee: J. Phys. Chem. B Vol. 109 (2005), p.10578.

Google Scholar

[15] P.X. Gao and Z.L. Wang: J. Am. Chem. Soc Vol. 125 (2003), p.11299.

Google Scholar

[16] A. Umar, S.H. Kim, Y.H. Im, Y.B. Hahn: Superlattices Microstruct Vol. 39 (2006), p.238.

Google Scholar

[17] H.B. Lu, L. Liao, J.C. Li, D.F. Wang, H. He, Q. Fu, L. Xu and Y. Tian: J. Phys. Chem. B Vol. 110 (2006), p.23211.

Google Scholar

[18] Q. Wan, K. Yu, T.H. Wang, C.L. Lin: Appl. Phys. Lett Vol. 83 (2003), p.2253.

Google Scholar