Gravity Anomaly Computed by GOCE Data in Northeastern Margin of Tibetan Plateau

Article Preview

Abstract:

In this paper, gravity anomaly in northeastern margin of Tibetan Plateau (90ºand 110º E, 28ºand 42º N) is computed using satellite gravity gradiometry data from GOCE satellite. The computed gravity anomaly is compared with the topographical data and location of some strong earthquakes in this region. The result shows that gravity anomaly has good conformity with the regional tectonic distribution and strong earthquake usually occurred in the steep gravity gradient zone.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1461-1464

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.M. Drinkwater, R. Haagmans , D. Muzi , et al.The GOCE gravity mission: ESA'a first core Earth explorer. In: Beutler GB, Drinkwater MR, Rummer R, Steiger Rvon(eds) Space science series of the ISSI, Earth gravity field from space-from sensors to Earth sciences, vol.18.Kluwer, Dordrecht pp.419-432.(2007)

DOI: 10.1007/978-94-017-1333-7_36

Google Scholar

[2] ESA.Gravity field and steady-state ocean circulation mission[R]. ESA sp-1233(1), Report for Mission Selection of the Four Candidate Earth Explorer Mission, ESA, Noordwijk, (1999)

DOI: 10.1007/978-3-642-59745-9_46

Google Scholar

[3] Barzaghi .R, Tselfes .N, Tziavos .I. N., et al. Geoid and high resolution sea surface topography modelling in the mediterranean from gravimetry, altimetry and GOCE data:evalution by simulation. J. Geod., 2009,83:751-772

DOI: 10.1007/s00190-008-0292-z

Google Scholar

[4] Reguzzoni .M, Tselfes .N. Optimal multi-step collocation: application to the space-wise approach for GOCE data analysis. J. Geod., 2009,83:13-29

DOI: 10.1007/s00190-008-0225-x

Google Scholar

[5] Visser .P.N.A.M. GOCE gradiometer:estimation of biases and scale factors of all six individual accelerometers by precise orbit determiantion. J.Geod., 2009,83:69-85

DOI: 10.1007/s00190-008-0235-8

Google Scholar

[6] Eshagh .M, Sjoberg .L.E. Atmospheric effects on satellite gravity gradiometry data. Journal of Geodynamics,2009,47:9-19

DOI: 10.1016/j.jog.2008.06.001

Google Scholar

[7] M. Eshagh. The effect of spatial truncation error on integral inversion of satellite gravity gradiometry data. Advances in Space Research,2011,47:1238-1247

DOI: 10.1016/j.asr.2010.11.035

Google Scholar

[8] T.H. Xu, K.F. He. Outlier Snooping Based on the Test Statistic of Moving Windows and Its Applications in GOCE Data Preprocessing[J]. Acta Geodaetica et Cartographica Sinica, 2009,38(5):391-3962009,38(5):391-396

Google Scholar

[9] X.Y. Xu, Z.T. W, X.C. Z,et al.Error Analysis and Simulation Research on Satellite Gravity Gradiometry data[J].Journal of Geodesy and Geodynamics,2010,30(2):71-752010,30(2):71-75

Google Scholar

[10] X.Y. Xu, J.C. Li, Z.T. Wang,et al. The Simulation Research on the Tikhonov Regularization Applied in Gravity Field Determination of GOCE Satellite Mission[J]. Acta Geodaetica et Cartographica Sinica, 2010,39(5):465-470. Tikhonov 2010,39(5):465-470

Google Scholar

[11] Z.C. Luo, B. Zhong, J.S. Ning. Numerical simulation and analyze on the orbital disturbation of GOCE satellite[J].Geomatics and Information Science of Wuhan University,2009,34(7):757-760 ,2009,34(7):757-760

Google Scholar

[12] Y.Z. Zhang, H.J. Xu, W.D. Wang, et al. Gravity anomaly from satellite gravity gradiometry data by GOCE in Japan Ms9.0 strong earthquake region[C]. 2011 3rd International Conference on Environmental Science and Information Application Technology, in press.

DOI: 10.1016/j.proenv.2011.09.086

Google Scholar

[13] W.A. Heiskanen, H. Moritz. Physical Geodesy, W.H. Freeman and Company, San Francisco and London, (1967)

Google Scholar

[14] W. Torge: Geodesy. 3. ed., de Gruyter, Berlin, 2001.

Google Scholar