Multi-Feature Fusion Based Object Detecting and Tracking

Article Preview

Abstract:

A new approach is proposed to detect and track the moving object. The affine motion model and the non-parameter distribution model are utilized to represent the object firstly. Then the motion region of the object is detected by background difference while Kalman filter estimating its affine motion in next frame. Center association and mean shift are adopted to obtain the observation values. Finally, the distance variance and scale variance between the estimated and detected regions are used to fuse the observation values to acquire the measurement value. To correct fusion errors, the observable edges are employed. Experimental results show that the new method can successfully track the object under such case as merging, splitting, scale variation and scene noise.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1824-1828

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Lu, S. M. Fei, J. Y. Zheng, T. Zhang: J. Data Acquisition and Processing. Vol.23 (2008), pp.563-568. In Chinese.

Google Scholar

[2] W. J. LIU, Y. J. ZHANG: J. Tsinghua University, Vol.48 (2008), pp.1104-1107. In Chinese.

Google Scholar

[3] L. Wang, T. Tan, W. Hu: Face tracking using motion-guided dynamic template matching, Proc. of Fifth Asian Conference on Computer Vision,(2002), pp.1-6.

Google Scholar

[4] C. Rasmussen, G.D. Hager: Joint probabilistic techniques for tracking objects using multiple visual cues, in: IEEE Int. Conf. on Intelligent Robots and Systems,(1998), pp.191-196.

DOI: 10.1109/iros.1998.724618

Google Scholar

[5] C. Lerdsudwichai, M. Abdel-Mottaleb, A. Ansari: Pattern Recognition. Vol.38 (2005), pp.1059-1070.

DOI: 10.1016/j.patcog.2004.11.022

Google Scholar

[6] H. T. Nguyen, M. Worring, R. Boomgaard: Occlusion robust adaptive template tracking. Proc. of IEEE Int. Conf. on Computer Vision, (2001),pp.678-683.

DOI: 10.1109/iccv.2001.937587

Google Scholar

[7] Z. S. Sun, J. X. Sun, J. Z. Song, S. Qiao: Optics and Precision Engineering. Vol.15 (2007),pp.267-271. In Chinese.

Google Scholar

[8] D. Comaniciu, V. Ramesh, P. Meer: IEEE Trans. on Pattern Analysis and Machine Intelligence. Vol.25( 2003),pp.564-577.

DOI: 10.1109/tpami.2003.1195991

Google Scholar

[9] N. S. Peng, J. Yang, Z. Liu: Pattern Recognition Letters. Vol.26 (2005),pp.605-614.

Google Scholar

[10] H. Lu, S. M. Fei, J. Y. Zheng, T. Zhang: J. Southeast University. Vol.24 (2008),pp.468-472.

Google Scholar

[11] N. Hoose: Traffic Engineering Control. Vol.23 (1992),pp.140-147.

Google Scholar