Numerical Study on Adhesive Interface Reinforcement of Piezoelectric Composite under Impact Load

Article Preview

Abstract:

The interfacial reinforcement with interlaminar chopped fibers of piezoelectric composite under impact electro-mechanical load was studied using nonlinear finite element method. A meso- mechanical model based on the main toughness reinforcement mechanism of single fiber bridging and pull out was adopted, and then a tri-linear bridging law was obtained, while the interface chopped fibers by defining nonlinear bidirectional spring elements between coincident nodes on the two crack surfaces within bridging zone and the energy release rate was calculated using the virtual crack closure technique. The numerical investigation indicates that the interlaminar chopped fiber can effectively reduce the crack tip energy release rate whether the applied voltage is positive or negative, which was an effective technique improve the interfacial toughness of the piezoelectric composite adhesive structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

849-857

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.Suo, G.Bao and B.Fan: J Mech. Phys. Solids. Vol. 40 (1992), p.1

Google Scholar

[2] X.N. Huang and D.Hull: Compos. Sci. Technol. Vol. 35 (1989), p.283

Google Scholar

[3] M.L. Benzeggagh and M.Kenane: Compos. Sci. Technol. Vol. 56 (1996), p.439

Google Scholar

[4] F.Sørensen Bent and Torben K.Jacobsen: Compos. Sci. Technol. Vol. 69 (2009), p.445

Google Scholar

[5] M.S. Sohn and X.Z.Hu: Compos. Vol. 26 (1995), p.849

Google Scholar

[6] F.Larsson: Compos. Part A Vol. 28 (1997), p.923

Google Scholar

[7] K.Dransfield, C.Baillie and Y.W. Mai: Compos. Sci. Technol. Vol. 50 (1994), p.305

Google Scholar

[8] M.S. Sohn, X.Z.Hu and J.K. Kim: Composites B Vol. 31 (2000), p.681

Google Scholar

[9] M.S. Sohn, X.Z.Hu and J.K. Kim: Polym. Polym. Compos. Vol. 9 (2001), p.157

Google Scholar

[10] B. Z.Huang, X.Z.Hu and J.Liu: Compos. Sci. Technol. Vol. 64 (2004), p.2165

Google Scholar

[11] W.Yan, H.Y. Liu and Y.W. Mai: Compos. Sci. Technol. Vol. 63 (2003), p.1481

Google Scholar

[12] W.Yan, H.Y. Liu and Y.W. Mai: Compos. Sci. Technol. Vol. 64 (2004), p. (1937)

Google Scholar

[13] S.Y. Sun, C.Wang and H.R. Chen: Acta Mater. Compos. Sin. Vol. 28 (2011), p.177.

Google Scholar

[14] N.M. Khutoryansky and H.Sosa: Int.J.Solids Struct. Vol. 32 (1995), p.3307

Google Scholar

[15] S.Ueda: Theor. Appl. Fract. Mec. Vol. 38 (2002), p.221

Google Scholar

[16] S.Ueda: Appl. Fract. Mec. Vol. 39 (2003), p.259

Google Scholar

[17] T.Nishioka, S.Shen and J.H.Yu: Int. J. Fract. Vol. 122 (2003), p.101

Google Scholar

[18] S.Hu, S.Shen and T.Nishioka: Int.J. Solids Struct. Vol. 44 (2007), p.8457

Google Scholar

[19] S.M. Kwon and K.Y. Lee: Arch. Appl. Mech. Vol. 72 (2002), p.318

Google Scholar

[20] C.Jin, X.D. Wang and M.J. Zuo: Acta. Mech. Vol. 211 (2010), p.215

Google Scholar

[21] Z.T. Chen: Int. J. Solids Struct. Vol. 43 (2006), p.5085

Google Scholar

[22] F.Yang, X.T. Zheng Y.Z.Li and X.H. Jiao: Acta Mater. Compos. Sin. Vol. 26(2009), p.163

Google Scholar