[1]
Engheia N. On the role of fractional calculus in electromagnetic theory[J]. Antennas and Propagation Magazine, IEEE Transactions, 39(4): 35–46. (1997).
DOI: 10.1109/74.632994
Google Scholar
[2]
Kenneth S. Miller. Derivative of Noninteger Order[J]. Mathematics Magazine, 168(3): 183-192(1995).
Google Scholar
[3]
Zhiqiang Zhou. Existence and uniqueness for a nonlinear fractional volterra integro Differential Equation[J]. Journal of huaihua university, 26(8): 1-4(2007).
Google Scholar
[4]
C. Capus,K. Brown. Fracional fourier transform of the Gaussian and fractional domain signal support[J]. Image Signal Process, (12): 99-106(2002).
DOI: 10.1049/ip-vis:20030313
Google Scholar
[5]
Tenreiro Machado J A, Isabel S. Jesus, Alexandra Galhano, Boaventura Cunha J. Fractional order electromagnetics[J]. Signal Processing, 86(10): 2637-2644(2006).
DOI: 10.1016/j.sigpro.2006.02.010
Google Scholar
[6]
Pu Yifei, Wang Weixing, Zhou Jiliu, Wang Yiyang, Jia Huading. Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation[C]. Science in China Series F: Information Sciences, 51(9): 1319-1339(2008).
DOI: 10.1007/s11432-008-0098-x
Google Scholar
[7]
Yiyang Wang, Yifei Pu, Jiliu Zhou. 1/2 Order fractional differential tree type circuit of digital image[J]. Congress on Image and Signal Processing(2008).
DOI: 10.1109/cisp.2008.574
Google Scholar
[8]
Vinagre B M, Chen Y Q, Ivo P. Two direct Tustin discretization methods for fractional-order differentiator and integrator[J]. Journal of the Franklin Institute, 340(5): 349-362(2003).
DOI: 10.1016/j.jfranklin.2003.08.001
Google Scholar
[9]
Pullia A, Riboldi S. Time-domain Simulation of electronic noises[J]. Nuclear Science, IEEE Transactions, 51(4): 1817–1823(2004).
DOI: 10.1109/tns.2004.832564
Google Scholar
[10]
Chien C T. Design of fractional order digital FIR differentiators[J]. Signal Processing Letters, IEEE, 8(3): 77–79(2001).
DOI: 10.1109/97.905945
Google Scholar
[11]
Samadi S, Ahmad M O, Swamy M N S. Exact fractional-order differentiators for polynomial signals Signal Processing Letters, IEEE, 11(6): 529–532(2004).
DOI: 10.1109/lsp.2004.827917
Google Scholar
[12]
Calderón A J, Vinagre B M, Feliu V. Fractional order control strategies for power electronic buck converters[J]. Signal Processing, 86(10): 2803-2819(2006).
DOI: 10.1016/j.sigpro.2006.02.022
Google Scholar
[13]
Machado J A T. Discrete-time fractional-order controllers[J].J. Fractional Calculus Appl. Anal., 4(1): 47-66(2001).
Google Scholar
[14]
Poinot T, Trigeassou J C. A method for modelling and simulation of fractional systems[J]. Signal Processing, 83(11): 2319-2333(2003).
DOI: 10.1016/s0165-1684(03)00185-3
Google Scholar
[15]
Manuel D O. A new symmetric fractional B-spline[J]. Signal Processing, 83(11): 2311-2318. (2003).
DOI: 10.1016/j.sigpro.2003.04.001
Google Scholar
[16]
Feilner M, Van De Ville D, Unser M. An orthogonal family of quincunx wavelets with continuously adjustable order Image Processing, IEEE Transactions, 14(4): 499–510(2005).
DOI: 10.1109/tip.2005.843754
Google Scholar
[17]
Lu, J G. Chaotic dynamics of the fractional-order Lu system and its synchronization[J]. PHYS LETT A, 354(4): 305-311(2006).
DOI: 10.1016/j.physleta.2006.01.068
Google Scholar
[18]
Lu J G. Chaotic dynamics of the fractional-order Ikeda delay system and its synchronization [J]. CHINESE PHYS, 15(2): 301-305(2006).
DOI: 10.1088/1009-1963/15/2/011
Google Scholar
[19]
Lu J G. Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal[J]. PHYSICA A, 359: 107-118(2006).
DOI: 10.1016/j.physa.2005.04.040
Google Scholar
[20]
Sebaa N, Fellah Z E A, Lauriks W, Depollier C. Application of fractional calculus to ultrasonic wave propagation in human cancellous bone. Signal Processing, 86(10): 2668-2677(2006).
DOI: 10.1016/j.sigpro.2006.02.015
Google Scholar
[21]
Magin, Richard L. Fractional calculus in bioengineering, part 2[J]. Crit Rev Biomed Eng, 32(2): 105-93. (2004).
DOI: 10.1615/critrevbiomedeng.v32.i2.10
Google Scholar
[22]
Magin, Richard L. Fractional calculus in bioengineering[J]. Crit Rev Biomed Eng. 32(1): 1-104. (2004).
DOI: 10.1615/critrevbiomedeng.v32.10
Google Scholar
[23]
Davis G B, Kohandel M, Sivaloganathan S, et al. The constitutive properties of the brain paraenchyma Part 2. Fractional derivative approach[J]. MED ENG PHYS, 28(5): 455-459. (2006).
DOI: 10.1016/j.medengphy.2005.07.023
Google Scholar