Study on the Memory Properties of Fractional Order Differential to Signals

Article Preview

Abstract:

By comparing and analyzing various orders coefficient curves of fractional order, this article studies the influence of order to the extraction of signal memory information, and then extends the result to image processing, as well as analyzes the influence of fractional order differential order to texture information extraction, then gives the order scope of texture information extraction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1090-1094

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Engheia N. On the role of fractional calculus in electromagnetic theory[J]. Antennas and Propagation Magazine, IEEE Transactions, 39(4): 35–46. (1997).

DOI: 10.1109/74.632994

Google Scholar

[2] Kenneth S. Miller. Derivative of Noninteger Order[J]. Mathematics Magazine, 168(3): 183-192(1995).

Google Scholar

[3] Zhiqiang Zhou. Existence and uniqueness for a nonlinear fractional volterra integro Differential Equation[J]. Journal of huaihua university, 26(8): 1-4(2007).

Google Scholar

[4] C. Capus,K. Brown. Fracional fourier transform of the Gaussian and fractional domain signal support[J]. Image Signal Process, (12): 99-106(2002).

DOI: 10.1049/ip-vis:20030313

Google Scholar

[5] Tenreiro Machado J A, Isabel S. Jesus, Alexandra Galhano, Boaventura Cunha J. Fractional order electromagnetics[J]. Signal Processing, 86(10): 2637-2644(2006).

DOI: 10.1016/j.sigpro.2006.02.010

Google Scholar

[6] Pu Yifei, Wang Weixing, Zhou Jiliu, Wang Yiyang, Jia Huading. Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation[C]. Science in China Series F: Information Sciences, 51(9): 1319-1339(2008).

DOI: 10.1007/s11432-008-0098-x

Google Scholar

[7] Yiyang Wang, Yifei Pu, Jiliu Zhou. 1/2 Order fractional differential tree type circuit of digital image[J]. Congress on Image and Signal Processing(2008).

DOI: 10.1109/cisp.2008.574

Google Scholar

[8] Vinagre B M, Chen Y Q, Ivo P. Two direct Tustin discretization methods for fractional-order differentiator and integrator[J]. Journal of the Franklin Institute, 340(5): 349-362(2003).

DOI: 10.1016/j.jfranklin.2003.08.001

Google Scholar

[9] Pullia A, Riboldi S. Time-domain Simulation of electronic noises[J]. Nuclear Science, IEEE Transactions, 51(4): 1817–1823(2004).

DOI: 10.1109/tns.2004.832564

Google Scholar

[10] Chien C T. Design of fractional order digital FIR differentiators[J]. Signal Processing Letters, IEEE, 8(3): 77–79(2001).

DOI: 10.1109/97.905945

Google Scholar

[11] Samadi S, Ahmad M O, Swamy M N S. Exact fractional-order differentiators for polynomial signals Signal Processing Letters, IEEE, 11(6): 529–532(2004).

DOI: 10.1109/lsp.2004.827917

Google Scholar

[12] Calderón A J, Vinagre B M, Feliu V. Fractional order control strategies for power electronic buck converters[J]. Signal Processing, 86(10): 2803-2819(2006).

DOI: 10.1016/j.sigpro.2006.02.022

Google Scholar

[13] Machado J A T. Discrete-time fractional-order controllers[J].J. Fractional Calculus Appl. Anal., 4(1): 47-66(2001).

Google Scholar

[14] Poinot T, Trigeassou J C. A method for modelling and simulation of fractional systems[J]. Signal Processing, 83(11): 2319-2333(2003).

DOI: 10.1016/s0165-1684(03)00185-3

Google Scholar

[15] Manuel D O. A new symmetric fractional B-spline[J]. Signal Processing, 83(11): 2311-2318. (2003).

DOI: 10.1016/j.sigpro.2003.04.001

Google Scholar

[16] Feilner M, Van De Ville D, Unser M. An orthogonal family of quincunx wavelets with continuously adjustable order Image Processing, IEEE Transactions, 14(4): 499–510(2005).

DOI: 10.1109/tip.2005.843754

Google Scholar

[17] Lu, J G. Chaotic dynamics of the fractional-order Lu system and its synchronization[J]. PHYS LETT A, 354(4): 305-311(2006).

DOI: 10.1016/j.physleta.2006.01.068

Google Scholar

[18] Lu J G. Chaotic dynamics of the fractional-order Ikeda delay system and its synchronization [J]. CHINESE PHYS, 15(2): 301-305(2006).

DOI: 10.1088/1009-1963/15/2/011

Google Scholar

[19] Lu J G. Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal[J]. PHYSICA A, 359: 107-118(2006).

DOI: 10.1016/j.physa.2005.04.040

Google Scholar

[20] Sebaa N, Fellah Z E A, Lauriks W, Depollier C. Application of fractional calculus to ultrasonic wave propagation in human cancellous bone. Signal Processing, 86(10): 2668-2677(2006).

DOI: 10.1016/j.sigpro.2006.02.015

Google Scholar

[21] Magin, Richard L. Fractional calculus in bioengineering, part 2[J]. Crit Rev Biomed Eng, 32(2): 105-93. (2004).

DOI: 10.1615/critrevbiomedeng.v32.i2.10

Google Scholar

[22] Magin, Richard L. Fractional calculus in bioengineering[J]. Crit Rev Biomed Eng. 32(1): 1-104. (2004).

DOI: 10.1615/critrevbiomedeng.v32.10

Google Scholar

[23] Davis G B, Kohandel M, Sivaloganathan S, et al. The constitutive properties of the brain paraenchyma Part 2. Fractional derivative approach[J]. MED ENG PHYS, 28(5): 455-459. (2006).

DOI: 10.1016/j.medengphy.2005.07.023

Google Scholar