[1]
Leonov G., Bunin A. and Koksch N., in: Attract or localization of the Lorenz system[J]. ZAMM 1987, 67 (2): 649-656.
Google Scholar
[2]
Liao X.X., Luo H.G., Fu Y.L., etc, in: Positive Invariant Set and the Globally Exponentially Attractive Set of Lorenz System Group[J]. Science in China–E 2007, 37(6): 757-769.
Google Scholar
[3]
Qin W.X. and Chen G.R., in: On the Boundedness of Solutions of the Chen System[J]. Journal of Mathematical Analysis and Application, 2007, 329(1): 445-451.
Google Scholar
[4]
Li D. M., Wu X.Q. and Lu J. A., in: Estimating the Ultimate Bound and Positively Invariant Set for the Hyperchaotic Lorenz-Haken System[J]. Chaos, Solitons and Fractals, 2009, 39: 1290-1296.
DOI: 10.1016/j.chaos.2007.06.038
Google Scholar
[5]
Chu Y.D., Li X.F. and Zhang J.G., etc, in: Computer Simulation and Circuit Implementation for a New Autonomous Chaotic System[J]. Journal of Sichuan University, 2007, 44 (3): 596-602.
Google Scholar
[6]
Shu Y.L., Xu H.X. and Zhao Y.H., in: Estimating the Ultimate Bound and Positively Invariant Set for a New Chaotic System and Its Application in Chaos Synchronization[J]. Chaos, Solitons and Fractals, 2009, 42: 2852-2857.
DOI: 10.1016/j.chaos.2009.04.003
Google Scholar
[7]
Wang G.H. and Jian J.G., in: Globally Exponentially Attractive Set and Controlling of a New Chaotic System. Int. Conf. Machine Learning and Cybernetics, 2010, 2: 916-921.
DOI: 10.1109/icmlc.2010.5580602
Google Scholar
[8]
S. Lefchetz: Differential Equations: Geometric Theory[M]. New York: Inter-science Publishers (1963).
Google Scholar