p.280
p.285
p.289
p.293
p.297
p.301
p.307
p.314
p.318
Spectral Data Modeling Based on Feature Extraction and Extreme Support Vector Regression
Abstract:
Spectral data such as near-infrared spectrum and frequency spectrum can simply the modeling of the difficulty-to-measured parameters. A novel modeling approach combined the feature extraction with extreme support vector regression (ESVR) is proposed. The latent variables space based feature extraction method can successfully complete the dimension reduction and independent variable extraction. The novel proposed ESVR leaning algorithm is realized by using extreme learning machine (ELM) kernel as SVR kernel, which is used to construct final models with better generalization. The experimental results based on the orange juice near-infrared spectra demonstrate that the proposed approach has better generalization performance and prediction accuracy.
Info:
Periodical:
Pages:
297-300
Citation:
Online since:
October 2011
Authors:
Price:
Сopyright:
© 2012 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: