[1]
Bellman, R., Kalaba, R., in: On adaptive control processes[J]. IEEE Transactions on Automatic Control, 1959 , 4(2): 1-9.
Google Scholar
[2]
Wassim M. Haddad', VijaySekhar Chellaboinat, and Tomohisa Hayakawat, in: Robust Adaptive Control for Nonlinear Uncertain Systems[C]. Proeeedings of the 40th IEEE Conference on Decision and Control, USA, 2001: 1615-1620.
Google Scholar
[3]
Utkin, V., in: Variable structure systems with sliding modes [J]. IEEE Transactions on Automatic Control, 1997 , 22(2): 212-222.
DOI: 10.1109/tac.1977.1101446
Google Scholar
[4]
K. Pathak, J. Franch, and S. K. Agrawal, in: Velocity and position control of a wheeled inverted pendulum by partial feedback linearization[J]. IEEE Transactions on Robot, 2005, 21(3): 505–513.
DOI: 10.1109/tro.2004.840905
Google Scholar
[5]
Cansever.G., and Ozguven O.F., in: Application of fuzzy set theory to stabilization of an inverted pendulum by high speed fuzzy logic controller[C]. Proceedings of 7th Mediterranean on Electro technical Conference. Antalya , Turkey, 1994: 1085 - 1088.
DOI: 10.1109/melcon.1994.380881
Google Scholar
[6]
Seikiguchi, M., Sugasaka, T., and Nagata, S., in: Control of a multivariable system by a neural network inverted pendulum[C]. Proceedings of IEEE International Conference on Robotics and Automation. Sacramento, CA, 1991: 2644 – 2649.
DOI: 10.1109/robot.1991.132028
Google Scholar
[7]
A. Ebrahim and G.V. Murphy., in: Adaptive backstepping controller design of an inverted pendulum[C]. Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory. Atlanta, USA, 2005: 172-174.
DOI: 10.1109/ssst.2005.1460900
Google Scholar
[8]
Hemami, H. , Weimer, F. , Koozekanani, S., in: Some aspects of the inverted pendulum problem for modeling of locomotion systems[J]. IEEE Transactions on Automatic Control, 1973, 18(6), 658-661.
DOI: 10.1109/tac.1973.1100432
Google Scholar