The Electronic and Magnetic Properties of Chemically Decorated Boron Nitride Sheet

Article Preview

Abstract:

The electronic and magnetic properties of the boron nitride (BN) sheets with different chemical decoration are investigated using the first-principles plane-wave calculations within density functional theory (DFT). It is demonstrated that bare BN sheets are nonmagnetic semiconductors with wide band gaps, and a metallic–semiconducting–half-metallic transition with a nonmagnetic– magnetic transfer can be realized through chemical decoration. Specifically, BN sheets modified by H with zigzag configuration still behave as semiconductors, while with armchair configuration are metallic. Nevertheless, decorating BN sheets by F or OH with zigzag configuration reveal half-metallic properties, then with armchair configuration present spin-polarized semiconducting characteristics. The results may be of importance in designing BN-based electronic devices for nanoelectronic applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1439-1443

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima: Phys. Rev. Lett. 75 (1995), 3918; M. Corso, T. Greber, J. Osterwalder: Surf. Sci. 577 (2005), L78.

DOI: 10.1103/physrevlett.75.3918

Google Scholar

[2] M. Topsakal, E. Akturk, S. Ciraci: Phys. Rev. B 79 (2009), 115442.

Google Scholar

[3] Z.H. Zhang and W.L. Guo: Phys. Rev. B 77 (2008), 075403.

Google Scholar

[4] X.F. Gao, Z. Zhou, Y.L. Zhao, S. Nagase, S.B. Zhang, Z.F. Chen: J. Phys. Chem. C 112 (2008), 12677.

Google Scholar

[5] F.W. Zheng, Z.R. Liu, J. Wu, W.H. Duan, B.L. Gu: Phys. Rev. B 78 (2008), 085423.

Google Scholar

[6] C.H. Park and S.G. Louie: Nano Lett. 8 (2008), 2200.

Google Scholar

[7] V. Barone and J.E. Peralta: Nano Lett. 8 (2008), 2210.

Google Scholar

[8] F.W. Zheng, G. Zhou, Z.R. Liu, J. Wu, W.H. Duan, B.L. Gu, S.B. Zhang: Phys. Rev. B 78 (2008), 205415.

Google Scholar

[9] L. Lai, J. Lu, L. Wang, G. Luo, J. Zhou, R. Qin, Z. Gao, W. N. Mei: J. Phys. Chem. C 113 (2009), 2273.

Google Scholar

[10] J.O. Sofo, A.S. Chaudhari, G.D. Barber: Phys. Rev. B 75 (2007), 153401.

Google Scholar

[11] J. Zhou, Q. Wang, Q. Sun, X.S. Chen, Y. Kawazoe, P. Jena: Nano Lett. 9 (2009), 3867.

Google Scholar

[12] N. Lu, Z.Y. Li, J.L. Yang: J. Phys. Chem. C 113 (2009), 16741.

Google Scholar

[13] J. Zhou, Q. Wang, Q. Sun, P. Jena: Phys. Rev. B 81 (2009), 085442.

Google Scholar

[14] P. E. Blochl: Phys. Rev. B 50 (1994), 17953.

Google Scholar

[15] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Ssingh, C. Fiolhais: Phys. Rev. B 46 (1992), 6671.

Google Scholar

[16] H.J. Monkhorst, J.D. Pack: Phys. Rev. B 13 (1976), 5188.

Google Scholar

[17] G. Kresse, J. Hafner: Phys. Rev. B 47 (1993), 558.

Google Scholar

[18] G. Kresse, J. Furthmuller: Phys. Rev. B 54 (1996), 11169.

Google Scholar