Indentation and Friction of Cu44Zr43Al10Nb3 Bulk Metallic Glasses on Nano-Scale

Article Preview

Abstract:

Indentation and sliding friction of the as-cast, the relaxed and the crystallized Cu44Zr43Al10Nb3 bulk metallic glass (BMG) are investigated on nanoscale by nanoindentation. The depth, the width and the morphology of the scratches formed by the tip of the nanoindentor are different, which reflect the differences in structure, not only between the glassy and the crystallized states but also between the two glassy states, the as-cast and the relaxed. The coefficient of sliding friction of Cu44Zr43Al10Nb3 BMG is increased with increasing the load, and it is maximal for annealed at 683K. Improved plastic deformability is found for the relaxed one.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2750-2753

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Inoue, Acta Mater. Vol. 48 (2000) p.279–306.

Google Scholar

[2] A. Inoue, B.L. Shen, H. Koshiba, H. Kato and A.R. Yavari, Acta Mater. Vol. 52 (2004), p.1631–1637.

Google Scholar

[3] J.R. Scully, A. Gebert and J.H. Payer, J. Mater. Res. Vol. 22 (2007), p.302–313.

Google Scholar

[4] J. Eckert, J. Das, S. Pauly and C. Duhamel, J. Mater. Res. Vol. 22 (2007), p.285–301.

Google Scholar

[5] A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, J Mater Res Vol. 16(2001), p.2836–44.

Google Scholar

[6] H.S. Chen, Scr Metall Vol. 7(1973), p.931–5.

Google Scholar

[7] J. Lu, G. Ravichandran and W.L. Johnson, Acta Mater Vol. 51(2003), p.3429–43.

Google Scholar

[8] T. Mukai, T.G. Nieh, Y. Kawamura and A. I noue, Intermetallics Vol. 10 (2002), p.1071.

Google Scholar

[9] W.J. Wright, R.B. Schwarz and W.D. Nix, Mater Sci Eng A; Vol. 319–321(2001) , p.229–32.

Google Scholar

[10] J.G. Wang, B.W. Choi, T.G. Nieh and C.T. Liu, J. Mater. Res. Vol. 15 (2000), p.798.

Google Scholar

[11] T. Benameur, K. Hajlaoui, A.R. Yavari and A. Inoue, Mater. Trans. Vol. 43 (2002), p.2617.

Google Scholar

[12] T.G. Nieh, C. Schuh, J.C. Wadsworth and Y. Li, Intermetallics Vol. 10 (2002), p.1177.

Google Scholar

[13] C.C. Hays, C.P. Kim and W.L. Johnson, Phys. Rev. Lett. Vol. 84 (2000), p.2901.

Google Scholar

[14] E. Fleury, S.M. Lee, H.S. Ahn and W.T. Kid, Mater Sci Eng A Vol. 375–377(2004), p.276.

Google Scholar

[15] U. Ramamurty, S. Jana, Y. Kawamura and K. Chattopadhyay, Acta Mater Vol. 53(2005), p.705.

Google Scholar

[16] J.J. Chang, K.M. Cho, W.S. Chung and K.H. Kim, Mater Sci Eng A Vol. 396(2005), p.423.

Google Scholar

[17] Y. Saotome, S. Miwa, T. Zhang and A. Inuoe, J Mater Process Technol Vol. 113(2001), p.64.

Google Scholar

[18] J.G. Wang, B.W. Choi, T.G. Nieh and C.T. Liu, J. Mater. Res. Vol 15 (2000), p.798.

Google Scholar

[19] Y.F. Sun, T.L. Cheung, Y.R. Wang and C.H. Shek, Mater. Sci. Eng. A Vol. 398 (2005), p.22.

Google Scholar

[20] D. Drozdz, T. Kulik and H.J. Fecht, J. Alloys Compd. Vol. 441 (2007), p.62.

Google Scholar