[1]
American Petroleum Institute, Computational Pipeline Monitoring for Liquids, API Recommended Practice 1130, First edition, (2007).
Google Scholar
[2]
P. Werle, F. Slemra, K. Maurera, R. Kormannb, R. Mückec and B. Jänkerd, Near- and mid-infrared laser-optical sensors for gas analysis, Optics and Lasers in Engineering, vol. 37, issue 2-3, pp.101-114, 2002, doi: 10. 1016/S0143-8166(01)00092-6.
DOI: 10.1016/s0143-8166(01)00092-6
Google Scholar
[3]
P. Werle, R. Mücke and F. Slemr, The limits of signal averaging in atmospheric tracegas monitoring by tunable diode-laser absorption spectroscopy (TDLAS), Appl. Phys. B: Lasers and Optics, 57, 131-139, 1993, DOI: 10. 1007/BF00425997.
DOI: 10.1007/bf00425997
Google Scholar
[4]
L.S. Rothman, R.L. Hawkins, R.B. Wattson and R.R. Gamache, Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol 48, Issue 5/6. pp.537-566.
DOI: 10.1016/0022-4073(92)90119-o
Google Scholar
[5]
K. Uehara, Alternate intensity modulation of a dual-wavelength He-Ne laser for differential absorption measurements, Applied Physics B: Lasers and Optics, vol. 38, issue 1, pp.37-40, 1985, DOI: 10. 1007/BF00691768.
DOI: 10.1007/bf00691768
Google Scholar
[6]
A. Mohebati and T. A. King, Remote detection of gases by diode laser spectroscopy, J. Modern Opt., vol. 35, issue 3, pp.319-324, 1988, DOI: 10. 1080/09500348814550361.
DOI: 10.1080/09500348814550361
Google Scholar
[7]
N. K. Dutta, A. B. Piccirilli, T. Cella, and R. L. Brown, Electronically tunable distributed feedback lasers, Appl. Phys. Lett., vol. 48, issue 22, pp.1501-1503, 1986, doi: 10. 1063/1. 96900.
DOI: 10.1063/1.96900
Google Scholar
[8]
Y. Yoshikuni, K. Oe, G. Motosugi, and T. Matsuoka, Broad wavelength tuning under single-mode oscillation with a multielectrode distributed feedback laser, Electron. Lett., vol. 22, issue 22, pp.1153-1134, 1972, doi: 10. 1049/el: 19860789.
DOI: 10.1049/el:19860789
Google Scholar
[9]
A. Rocco, G. De Natale, P. De Natale, G. Gagliardi and L. Gianfrani, A diode-laser-based spectrometer for in-situ measurements of volcanic gases, Applied Physics B: Lasers and Optics, Volume 78, Number 2, 235-240, 2004, DOI: 10. 1007/s00340-003-1339-8.
DOI: 10.1007/s00340-003-1339-8
Google Scholar
[10]
M. Pantania, F. Castagnoli, F. D'Amato, M. De Rosa, P. Mazzinghi and P.W. Werle, Two infrared laser spectrometers for the in situ measurement of tratospheric gas concentration, Infrared Physics & Technology, Volume 46, Issues 1-2, pp.109-113, December (2004).
DOI: 10.1016/j.infrared.2004.03.015
Google Scholar
[11]
F. D'Amato, P. Mazzinghi and F. Castagnoli, Methane analyzer based on TDL's for measurements in the lower stratosphere: design and laboratory tests, Applied Physics B: Lasers and Optics, Volume 75, Numbers 2-3, 195-202, DOI: 10. 1007/s00340-002-0981-x.
DOI: 10.1007/s00340-002-0981-x
Google Scholar
[12]
V. Zéninari,B. Parvitte, D. Courtois, V. A. Kapitanov and Yu. N. Ponomarev, Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor, Infrared Physics & Technology, Volume 44, Issue 4, August 2003, Pages 253-261.
DOI: 10.1016/s1350-4495(03)00135-x
Google Scholar