Efficient Minkowski Sum Computation of General Ployhedra

Article Preview

Abstract:

We present an algorithm to compute Minkowski sum of general ployhedra, the algorithm removes unnecessary information of computing pairwise Minkowski sum by redundancy analysis and adopt heuristic sorting order to improve computing efficiency of union process, contrast experiments show the algorithm is efficient and suitable for CAD and CAM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

487-490

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X.J. Guo, Y.L. Gao and Y. Liu. Optimization Algorithm for Computing Exact Minkowski sum of 3D Convex Polyhedra IJICIC, Vol-4, no. 6, (2008), pp.1401-1410.

Google Scholar

[2] P Hachenberger, L Kettner and K Mehlhorn. Boolean operations on 3d selective Nef complexes: data structure, algorithms, optimized implementation and experiments. Comput. Geom. Theory Appl., Vol-38, no1-2, (2007), pp.64-99.

DOI: 10.1016/j.comgeo.2006.11.009

Google Scholar

[3] G. Varadhan, D. Manocha. Accurate Minkowski sum approximation of polyhedral models. Graph Models. Vol-68, no. 4, (2006), p.343–355.

DOI: 10.1016/j.gmod.2005.11.003

Google Scholar

[4] J.M. Lien. Covering Minkowski sum boundary using points with applications. Comput. Aided Geom. Des., Vol-25, no. 8, (2008), pp.652-666.

DOI: 10.1016/j.cagd.2008.06.006

Google Scholar

[5] P. K. Agarwal, E. Flato, and D. Halperin. Polygon decomposition for efficient construction of minkowski sums . European Symposium on Algorithms, (2000), p.20–31.

DOI: 10.1007/3-540-45253-2_3

Google Scholar

[6] P. Ghosh. A unified computational framework for Minkowski operations . Comput. Graph., Vol-17, no. 4 (1993), pp.357-378.

Google Scholar