Efficient and Secure Two-Way Asynchronous Quantum Secure Direct Communication Protocol by Using Entangled States

Article Preview

Abstract:

An efficient and secure two-way asynchronous quantum secure direct communication protocol by using entangled states is proposed in this paper. Decoy photons are utilized to check eavesdropping; the securities of the protocol are equal to BB84 protocol. After ensuring the security of the quantum channel, both parties encode the secret message by using CNOT operation and local unitary operation separately. The two-way asynchronous direct transition of secret message can be realized by using Bell measurement and von Neumann measurement, combined with classical communication. Different from the present quantum secure direct communication protocols, the two parties encode secret message through different operations which is equivalent to sharing two asymmetric quantum channels, and the protocol is secure for a noise quantum protocol. The protocol is efficient in that all entangled states are used to transmit secret message.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1171-1178

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ZHANG Hua-ping , LIU Qun, CHENG Xue-qi, et al. Chinese lexical analysis using hierarchical hidden Markov model[C]/Proceedings of the 2nd SIGHAN Workshop on Chinese Language Processing. Morristown, NJ: Association for Computational Linguistics, 2003: 63-70.

DOI: 10.3115/1119250.1119259

Google Scholar

[2] A. Panuccio ,M. Bicego ,V. Murino . A Hidden Markov Model-based approach to sequential data clustering. In: Structural, Syntactic and Statistical Pattern Recognition (SSPR02) , Springer , 2002 , 734-742.

DOI: 10.1007/3-540-70659-3_77

Google Scholar

[3] Yuan Lei. based on probabilistic model for text clustering [D] Jilin University, 2005, 1-4.

Google Scholar

[4] section Jiao Jiang, Xue Yongsheng, woods rain, Wang Wei, Shi Bole. A new Markov model based on hierarchical clustering algorithm for time series [J] Computer Research and Development, 2006, (01), 3 - 4.

Google Scholar

[5] Bandyopadhyay S, Mauli k U. A n evolutionary technique based on K-Means algorithm for optional clustering in RN[J]. Information S ciences, 2002, 146: 221-237.

DOI: 10.1016/s0020-0255(02)00208-6

Google Scholar

[1] Bennett C H, Brassard G. Quantum Cryptography: Public Key Distribution and Coin Tossing[C]. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore, India: [s. n. ], 1984: 175-179.

Google Scholar

[2] Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319.

Google Scholar

[3] Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin Phys Lett, 2004, 21: 601-603.

Google Scholar

[4] K. Bostrom, T. Felbinger. Deterministic Secure Direct Communication Using Entanglement[J]. Phys Rev Lett, 2002, 89: 187902.

DOI: 10.1103/physrevlett.89.187902

Google Scholar

[5] K. Bostrom, T. Felbinger. Deterministic Secure Direct Communication Using Entanglement[J]. Phys Rev Lett, 2002, 89: 187902.

DOI: 10.1103/physrevlett.89.187902

Google Scholar

[6] Cai Q Y, Li B W. Improving the capacity of the Bostrom-Felbinger protocol [J]. Phys Rev A, 2004, 69: 054301.

Google Scholar

[7] Kim Bostrŏm, et al. Deterministic secure direct communication using entanglement[J]. Phys. Rev. Lett, 2002, 89: 187902.

Google Scholar

[8] Cabello. Quantum key distribution without alternative measurements. Phy. Rev. A. (2000).

Google Scholar

[9] Yan FL, Gao T. Quantum secret sharing between multiparty and multiparty without entanglement[J]. Phys. Rev. A, 72 (2005), 012304.

DOI: 10.1103/physreva.72.012304

Google Scholar

[10] Yu Y F, Xu Y, Liu J. A quantum secret sharing scheme among three parties ultilizing four-qubit Smolin bound entangled state[J]. arXiv: quant/ph/0605225v2 28 Sep (2006).

Google Scholar

[11] Nguyen B A. Quantum dialogue. Phys Lett A, 2004, 328: 6-10.

Google Scholar

[12] Gao F, Guo F Z, Wen Q Y et al. Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci China Ser G-Phys Mech Astron, 2008, 51(5): 559-566.

DOI: 10.1007/s11433-008-0065-y

Google Scholar

[13] Tan Y G, Cai Q Y. Classical correlation in quantum dialogue. ArXiv: 0802. 0358.

Google Scholar

[14] Shi G F, Xi X Q, Tian X L, et al. Bidirectional quantum secure communication based on a shared private Bell state. Opt Commun, 2009, 282: 2460-2463.

DOI: 10.1016/j.optcom.2009.02.062

Google Scholar

[15] Gao F, Qin S J, Wen Q Y, et al. Comment on: Three-party quantum secure direct communication based on GHZ states, [Phys. Lett. A 354 (2006) 67]. Phys Lett A, 2008, 372: 3333-3336.

DOI: 10.1016/j.physleta.2008.01.043

Google Scholar

[16] Man Z X, Xia Y J. Improvement of Security of Three-Party Quantum Secure Direct Communication Based on GHZ States. Chin Phys Lett, 2007, 24: 15-18.

DOI: 10.1088/0256-307x/24/1/005

Google Scholar