A New Hybrid Collaborative Filtering Algorithm

Article Preview

Abstract:

Considering the inaccuracy of the traditional similarity method in the k-nearest neighbor algorithm (KNN), we put forward a hybrid algorithm crossing the principal components analysis (PCA) and KNN via a fresh hybrid way. The algorithm makes use of differences in the contribution rates of features mined by PCA to build the similarity model of users. The experiment results argue that the fresh hybrid algorithm makes personalized recommendations very effective.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-86

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Zhou, J. Ren, M. Medo, Y. C. Zhang, Bipartite network projection and personal recommendation, Phys Rev E. 76 (2007) 046115.

DOI: 10.1103/physreve.76.046115

Google Scholar

[2] W. Hill, L. Stead, M. Rosenstein, G. Furnas, Recommending and Evaluating Choices in a Virtual Community of Use, Proc. Human Factors in Computing Systems, 1995, pp.194-201.

DOI: 10.1145/223904.223929

Google Scholar

[3] J. Liu, T. Zhou, B. H. Wang, Progress of the personalized recommendation systems, Progress of Nature and Science 19 (2009) 1-15.

Google Scholar

[4] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl, GroupLens: An open architecture for collaborative filtering of netnews, Proc. Computer Supported Collaborative Work, Eds. ACM, 1994, p.175–186.

DOI: 10.1145/192844.192905

Google Scholar

[5] J. Herlocker, J. Konstan, A. Borchers, J. Riedl, An Algorithmic Framework for Performing Collaborative Filtering, Proc. SIGIR. Research and development in information retrieval, 1999, pp.230-237.

DOI: 10.1145/312624.312682

Google Scholar

[6] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, J. Riedl, GroupLens: Applying Collaborative Filtering to Usenet News, Comm. ACM, 40 (1997) 77-87.

DOI: 10.1145/245108.245126

Google Scholar

[7] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation algorithms, Proc. 10th International World Wide Web, 2001, pp.285-295.

DOI: 10.1145/371920.372071

Google Scholar

[8] U. Shardanand, P. Maes. Social Information Filtering: Algorithms for Automating Word of Mouth", Proc. CHI, 95, 1995, pp.210-217.

DOI: 10.1145/223904.223931

Google Scholar

[9] Z. Huang, D. Zeng, H. Chen, A Comparison of Collaborative-Filtering Recommendation Algorithms for E-commerce, IEEE Intelligent Systems, 22 (2007) 68-78.

DOI: 10.1109/mis.2007.4338497

Google Scholar

[10] J. Delgado, N. Ishii, Memory-Based Weighted-Majority Prediction for Recommender Systems, Proc. ACM SIGIR'99. Workshop Recommender Systems: Algorithms and Evaluation, 1999, p.1–5.

Google Scholar

[11] B. M. Sarwar, G. Karypis, J. A. Konstan, J. T. Riedl, Application of Dimensionality Reduction in Recommender System - A Case Study, Proc. ACM WebKDD Workshop, (2000).

DOI: 10.21236/ada439541

Google Scholar

[12] F. Wang, P. Li, Efficient Nonnegative Matrix Factorization with Random Projections, Proc. 10th SIAM International Conference on Data Mining, 2010, pp.281-292.

DOI: 10.1137/1.9781611972801.25

Google Scholar

[13] T. Li, J. D. Wang, A Privacy-Preserving Collaborative Filtering Algorithm Based on Non-negative Matrix Factorization, Information and Control 37 (2008) 660-664.

Google Scholar

[14] L. Ungar, D. P. Foster, A formal statistical Approach to Collaborative Filtering, Proc. CONALD'98.

Google Scholar

[15] T. Hofmann, Latent Semantic Models for Collaborative Filtering, ACM Trans on Information Systems 22 (2004) 89-115.

DOI: 10.1145/963770.963774

Google Scholar

[16] B. Marlin, Modeling User Rating Profiles for Collaborative Filtering, Proc. Neural Information Processing Systems (NIPS' 03), 16(2003), pp.627-634.

Google Scholar

[17] K. Goldberg, T. Roeder, D. Gupta, C. Perkins, Eigentaste: A Constant Time Collaborative Filtering Algorithm, Information Retrieval J. 4 (2001) 133-151.

Google Scholar

[18] I. T. Jolliffe, Principal Component Analysis. John Wiley and Sons Ltd, (2002).

Google Scholar

[19] Information on http: /www. snl. salk. edu/~shlens/pca. pdf.

Google Scholar

[20] J. G. Liu, T. Zhou, Q. Guo, B. H. Wang, Overview of the Evaluated Algorithms for the Personal Recommendatin Systems, Complex Systems and Complexity Science, 6 (2009) 1-10.

Google Scholar

[21] Y. Y. Yao, Measuring retrieval effectiveness based on user preference of documents, Journal of the American Society for Information Science 46 (1995) 133–145.

DOI: 10.1002/(sici)1097-4571(199503)46:2<133::aid-asi6>3.0.co;2-z

Google Scholar