Solubilities Prediction and Partial Molar Volume Calculation for 2-Butanol and CO2 Binary Mixture at High Pressure

Article Preview

Abstract:

A constant-volume visual cell was used to measure vapor-liquid phase equilibrium data of 2-butanol in supercritical carbon dioxide from 323.2K to 353.2K. The phase equilibrium solubilities were predicted by Peng-Robinson equation of state together with Vander Waals-2 mixing regulation. Dependence of solubility of CO2 in liquid 2-butanol on pressure was discussed by Krichevsky-kasarnovsky equation. Meanwhile, Henry’s constants and partial molar volume at infinite dilution were determined. Also partial molar volumes of vapor phase and liquid phase at equation state were evaluated from proposed model. The correlation between calculated values and the experimental data showed good agreement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1032-1039

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kamel, K., Paolo, A., Ireneo, K., Abdallah, D., Solubility of diamines in supercritical carbon dioxide experimental determination and correlation, J. Supercrit. Fluids, 41, 10-19 (2007).

Google Scholar

[2] J.H. Hsu, C.S. Tan, Separation of ethanol from aqueous solution by a method incorporating supercritical CO2 with reverse osmosis, J. of Membrane Science, 81, 273-285. (1993).

DOI: 10.1016/0376-7388(93)85179-z

Google Scholar

[3] Zhang, J.C., WU, X.Y., CAO, W.L., Study on critical properties for CO2+cosolvent binary system and ternary system, Chin. J. Chem. Eng., 10 (2), 223-227 (2002).

Google Scholar

[4] Ghaziaskar H.S., Daneshfar A., Rezayat M., The co-solubility of 2-ethylhexanoic acid and some liquid alcohols in supercritical carbon dioxide, Fluid Phase Equilibria, 238, 106-111 (2005).

DOI: 10.1016/j.fluid.2005.09.023

Google Scholar

[5] Elizalde-Solis O., Galicia-Luna L.A., Sandler S.I., Vapor–liquid equilibria and critical points of the CO2 + 1-hexanol and CO2 + 1-heptanol systems, Fluid Phase Equilibria, 210, 215-227 (2003).

DOI: 10.1016/s0378-3812(03)00170-5

Google Scholar

[6] Lee H.S., Lee H., High-pressure phase equilibria for the carbon dioxide–2-pentanol and carbon dioxide–water–2-pentanol systems, Fluid Phase Equilibria , 150-151, 695-701 (1998).

DOI: 10.1016/s0378-3812(98)00349-5

Google Scholar

[7] Silva M.V., Barbosa D., High pressure vapor–liquid equilibrium data for the systems carbon dioxide/2-methyl-1-propanol and carbon dioxide/3-methyl-1-butanol at 288. 2, 303. 2 and 313. 2 K, Fluid Phase Equilibria 198, 229-237 (2002).

DOI: 10.1016/s0378-3812(01)00766-x

Google Scholar

[8] Silva-Oliver G., Galicia-Luna L.A., Sandler S.I., Vapor–liquid equilibria and critical points for the carbon dioxide +1-pentanol and carbon dioxide +2-pentanol systems at temperatures from 332 to 432 K, Fluid Phase Equilibria, 200, 161-172 (2002).

DOI: 10.1016/s0378-3812(02)00024-9

Google Scholar

[9] Zuniga-Moreno A., Galicia-Luna L.A., Sandler S.I., Compressed liquid densities and excess molar volumes for (CO2 + 1-pentanol) binary system at temperatures from 313  to 363 K and pressures up to 25 MPa, J. Chem. Thermodynamics , 40, 180-192 (2008).

DOI: 10.1016/j.jct.2007.07.005

Google Scholar

[10] Lopez J.A., Trejos V.M., Cardona C.A., Parameters estimation and VLE calculation in asymmetric binary mixtures containing carbon dioxide + n-alkanols, Fluid Phase Equilibria 275, 1-7. (2009).

DOI: 10.1016/j.fluid.2008.09.013

Google Scholar

[11] Cortesi A., Kikic I., Determination of partial molar volumes at infinite dilution of alcohols and terpenes in supercritical carbon dioxide, J. of Supercritical Fluid, 9, 141-145 (1996).

DOI: 10.1016/s0896-8446(96)90024-8

Google Scholar

[12] Tatsuru, S., Naoki, T., Kunio, N., Solubilities of ethanol, 1-prjopanol, 2-propanol and 1-butanol in supercritical carbon dioxide at 313 K and 333 K, Fluid Phase Equilibrium, 67, 213-226 (1991).

DOI: 10.1016/0378-3812(91)90057-e

Google Scholar

[13] Feng L.C., Cheng K.W., Tang M., Chen Y.P., Vapor–liquid equilibria of carbon dioxide with ethyl benzoate, diethyl succinate and isoamyl acetate binary mixtures at elevated pressures, J. of Supercritical Fluid , 21, 111-121 (2001).

DOI: 10.1016/s0896-8446(01)00091-2

Google Scholar

[14] Yousef A.M., Elkanzi E.M., Singh H., "Prediction of supercritical CO2 solubility using the Krichevsky–Ilinskaya equation with as an adjustable parameter, J. of Supercritical Fluid, 20, 105-112 (2001).

DOI: 10.1016/s0896-8446(01)00054-7

Google Scholar

[15] A. Cortesi, I. Kikic, J. of Supercritical Fluid 9(1996) 141-145.

Google Scholar

[16] [S.O. Guadalupe, Galicia-Luna L.A., Vapor–liquid equilibria near critical point and critical points for the CO2+1-butanol and CO2+2-butanol systems at temperatures from 324 to 432 K, Fluid Phase Equilibria, 182, 145-156 (2001).

DOI: 10.1016/s0378-3812(01)00388-0

Google Scholar

[17] Chen H.I., Chen P.H., Chang H.Y., High-Pressure Vapor−Liquid Equilibria for CO2 + 2-Butanol, CO2 + Isobutanol, and CO2 + tert-Butanol Systems, J. Chem. Eng. Data, 48, 1407-1412. (2003).

DOI: 10.1021/je020214r

Google Scholar

[18] Peng D.Y., Robinson D.B., A new Two-Constant Equation of State , Ind. Eng. Chem. Fundam, 1559-64 (1976).

Google Scholar

[19] Soave G., Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27, 1197-1205 (1972).

DOI: 10.1016/0009-2509(72)80096-4

Google Scholar

[20] Krichevsky I.R., Kasarnovsky J.S., Thermodynamical Calculations of Solubilities of Nitrogen and Hydrogen in Water at High Pressures, J. Am. Chem. Soc, 57, 2168–2171 (1935).

DOI: 10.1021/ja01314a036

Google Scholar

[21] G.Q. Liu, L.X. Ma, J. Liu, Chemical Property Data Handbook. Chemical Industry Press, Peking, (2002) 60.

Google Scholar

[22] John, M.P., Rüdiger, N.L., Edmundo, G.A., High pressure vapor-liquid equilibrium calculation, Molecular Thermodynamics of Fluid-Phase Equilibria, Chemical Industry Press, Beijing, 435-441(2006). (in Chinese).

Google Scholar