[1]
Slat er G F, Lollar B S, King R A, et al, Isotopic fractionation during reductive dechlorination of trichloroethene by zero-valent iron: Influence of surface treatment, Chemosphere, vol. 49, no. 2, p.589, (2002).
DOI: 10.1016/s0045-6535(02)00327-2
Google Scholar
[2]
Maymo-Gatell X, Nijenhuis I, Zinder S H, Reductive dechlorination of cis-1, 2-dichloroethene and vinylchloride by dehalococcoides ethenogenes, Environmental Science and Technology, vol. 35, no. 3, p.516, (2001).
DOI: 10.1021/es001285i
Google Scholar
[3]
US Secure Drinking Council. Drinking and Health, translated by Xu Youyun, Gu Yinan, Beijing: The People's Sanitation Press, 1982, pp.26-29.
Google Scholar
[4]
SU Chunming , Plus R W, Kinetics of trichloroethylene reduction by zerovalent iron and tin: Pretreatment effect, apparent activation energy , and intermediate products, Environmental Science and Technology, vol. 33, no. 1, p.163, (1999).
DOI: 10.1021/es980481a
Google Scholar
[5]
Yang Zaichang, Problems about the mutagenicity and carcinogenicity of drinking water, Journal of Environment and Health, p.1, (1988).
Google Scholar
[6]
Cui Junfang, Zheng Xilai, Lin Guoqing, Osmotic reaction wall technique in groundwater organic pollution treatment, Water Science Progression, vol. 14, no. 3, pp.363-367, (2003).
Google Scholar
[7]
Zhang Xinjian, Huang Leyang, Investigation about 15 trichloroethylene toxicosis cases, Journal of China Industrial Medicine, vol. 13, no. 3, pp.165-166, (2000).
Google Scholar
[8]
Wang Yingfeng, Analysis of trichloroethylene and its metabolites, China Sanitary Inspection, vol. 5, no. 6, pp.360-363, (1995).
Google Scholar
[9]
Song Hanlin, Cheng Chongquan, Su Ping, et al, The discuss about chronic influencing of trichloroethylene on human body, Vocational Sanitation and injury&illness, vol. 10, no. 3, pp.138-192, (1995).
Google Scholar
[10]
Sharp D W A, Dictionary of Chemistry, London: Penguin Books Press, (1990).
Google Scholar
[11]
Poh-Gek Forkert, 1, 1-Dichloroethylene-Induced Clara Cell Damage Is Associated with In Situ Formation of the Reactive Epoxide, American Journal Of Respiratory And Molecular Biology , vol. 20, pp.1310-1318, (1999).
DOI: 10.1165/ajrcmb.20.6.3525
Google Scholar
[12]
Wackett L P, Brusseau G A, Householder S R, et al., Survey of microbial oxygenases trichloroethylene degradation by propane oxidizing bacteria, Applied and Environmental Microbiology , vol. 55, no. 11, pp.2960-2964, (1989).
DOI: 10.1128/aem.55.11.2960-2964.1989
Google Scholar
[13]
Xu Yelin, Investigation about healthy influencing of trichloroethylene on environment and the employed,. Journal of China Sanitary Engineering , vol. 8, no. 1, pp.38-40, (1999).
Google Scholar
[14]
Vogel T M, Criddle C S, McCarty P L, Transformation of halogenated aliphatic compounds, Environmental Science and Technology, vol. 21, p.722–736, (1987).
DOI: 10.1021/es00162a001
Google Scholar
[15]
Infante P F, Tsongas T A, Mutagenic and oncogenic effects of chloromethanes chloroethanes and halogenated analogs of vinyl chloride, Environmental Science and Research, vol. 25, pp.301-327, (1987).
DOI: 10.1007/978-1-4613-3455-2_23
Google Scholar
[16]
Wang Liansheng, Organic pollution Chemistry, 1st ed., Beijing: Science Press, (1990).
Google Scholar
[17]
John W. Davis, J. Martin Odom, Kim A. DeWeerd, et al., Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: characterization of microbial community structure, Journal of Contaminant Hydrology, vol. 57, p.41–59, (2002).
DOI: 10.1016/s0169-7722(01)00217-0
Google Scholar
[18]
Dario Frascari, Davide Pinelli, Massimo Nocentini, et al., Long-term aerobic cometabolism of a chlorinated solvent mixture by vinyl chloride-, methane- and propane-utilizing biomasses, Journal of Hazardous Materials, vol. B, no. 138, p.29–39, (2006).
DOI: 10.1016/j.jhazmat.2006.05.009
Google Scholar
[19]
T. Prabhakar Clement, Christian D. Johnson, Yunwei Sun, et al., Natural attenuation of chlorinated ethane compounds: model development and field-scale application at the Dover site, Journal of Contaminant Hydrology , vol. 42, p.113–140, (2000).
DOI: 10.1016/s0169-7722(99)00098-4
Google Scholar
[20]
Karen L. Brungarda, Junko Munakata-Marrb, Craig A. Johnsonc, et al., Stable carbon isotope fractionation of trans-1, 2-dichloroethylene during co-metabolic degradation by methanotrophic bacteria, Chemical Geology, vol. 195, p.59– 67, (2003).
DOI: 10.1016/s0009-2541(02)00388-1
Google Scholar
[21]
Ademola O. Olaniran, Dorsamy Pillay, Balakrishna Pillay, Biostimulation and bioaugmentation enhancing aerobic biodegradation of dichloroethenes, Chemosphere, vol. 63, p.600–608, (2006).
DOI: 10.1016/j.chemosphere.2005.08.027
Google Scholar
[22]
Michael E. Witt, Gary M. Klecka, Edward J. Lutz, et al., Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: groundwater biogeochemistry, Journal of Contaminant Hydrology, vol. 57, p.61– 80, (2002).
DOI: 10.1016/s0169-7722(01)00218-2
Google Scholar
[23]
Irina Kouznetsova, Xiaomin Mao, Clare Robinson, et al., Biological reduction of chlorinated solvents: Batch-scale geochemical modeling,. Advances in Water Resources, in press.
DOI: 10.1016/j.advwatres.2010.04.017
Google Scholar
[24]
Gabriel R. Kassenga, John H. Pardue, Steve Blair, Treatment of chlorinated volatile organic compounds in upflow wetland mesocosms, Ecological Engineering, vol. 19, pp.305-323, (2003).
DOI: 10.1016/s0925-8574(02)00122-2
Google Scholar
[25]
Dario Frascari, Davide Pinelli, Massimo Nocentini, et al., The kinetic of chlorinated solvent(DCE included) cometabolic biodegradation by propane-grown Rhodococcus sp. PB1, Biochemical Engineering Journal, vol. 42, no. 2, pp.139-147, (2008).
DOI: 10.1016/j.bej.2008.06.011
Google Scholar
[26]
Ademola O. Olaniran, Dorsamy Pillay, Balakrishna Pillay, et al., Aerobic biodegradation of DCE by indigenous bacteria isolated from contaminated sites in Africa, Chemosphere, vol. 73, p.24–29, (2008).
DOI: 10.1016/j.chemosphere.2008.06.003
Google Scholar
[27]
Charles E. Schaefer, Charles W. Condee, Simon Vainberg, et al., Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: Comparison between batch and column experiments, Chemosphere, vol. 75, p.141–148, (2009).
DOI: 10.1016/j.chemosphere.2008.12.041
Google Scholar
[28]
Kathrin R. Schmidt, Tobias Augenstein, Michael Heidinger, et al., Aerobic biodegradation of cis-1, 2-dichloroethene as sole carbon source: Stablecarbon isotope fractionation and growth characteristics, Chemosphere, vol. 78, p.527–532, (2010).
DOI: 10.1016/j.chemosphere.2009.11.033
Google Scholar
[29]
Zhang Zijie, Lin Rongchen, Jin Rulin, Water Drainage Works, 4th ed., Beijing: China Architectural Industry Press, 2000, p.115.
Google Scholar
[30]
J.B.S. Haldane, Enzymes, Cambridge, MA: MIT Press, (1965).
Google Scholar