[1]
Zhudian Fang, Chen Jiankang, Kwok school. Methods of structural reliability analysis [J]. China Rural Water and Hydropower , 2002, 8: 47-49.
Google Scholar
[2]
Wei-Dong Wen, Xuhui Zhen, Gu Yuming, Hao Yong. Fiber reinforced resin matrix composite optimization design [J]. Nanjing University of Aeronautics and Astronautics, 1999, 31(4): 436-446.
Google Scholar
[3]
Chow TS. On the propagation of fxeural waves in an orthotropic laminated pbates and its response to an impulsive load[J].J. Comp. Mater. , 1971, (5): 306-319.
DOI: 10.1177/002199837100500302
Google Scholar
[4]
ANG ASD. Chow PC and Rose J.L.: Strongly coupled stress waves in heterogenous plats[J]. Am INST Aeronart. Astronaut. Jnl, 1972. (10), 1088-1090.
Google Scholar
[5]
Reddy J. N: On the solutions to forced motions of rectangular composite plates[J]J. Appl. Mech. , 1982, (49): 403-408.
DOI: 10.1115/1.3162101
Google Scholar
[6]
Reddy J. N: Dynamic (transient)analyasis of layered anisotropic composite-material plates[J], Int. J. Nuner, Meth. Engng, 1983, (19), 237-255.
DOI: 10.1002/nme.1620190206
Google Scholar
[7]
Mallikarinna and Kant.T.: Dynamics of laminated composite plates with a higher-crder theoryand finite element discretization[J]. Sound Vidr., 1988, (126): 463-475.
DOI: 10.1016/0022-460x(88)90224-6
Google Scholar
[8]
Kang T., Ravichandran, R. V. Pandy. B.N. and Mallikarjuna: Finitc element analysis of isotropic and fibre reinforced compsiteplates using a higher-order theory[J]. Comp. Strucl. 1988. (9). 319-342.
DOI: 10.1016/0263-8223(88)90051-7
Google Scholar
[9]
NATHY, MAHRENHOLTZO. Nonlinear dynamic response of a doubly curred shallow shell on an elastic foundation[J]. J Sound &Vibration, 1987, 112(1): 53-61.
DOI: 10.1016/s0022-460x(87)80093-7
Google Scholar
[10]
CHEUNG YK, FUYM. Nontinear anslysis of dynamie stability for taminated circular cylindrical thick shells with ends clastically supported against rotation[J]. Acta Mechanica Sclica Sinica, 1994. 7(1): 15-28.
Google Scholar
[11]
Qin Rong, Structural mechanics, spline functions [M]. Nanning: Guangxi People's Publishing House . (1985).
Google Scholar
[12]
Shen Pengcheng, Structural analysis of spline finite element method [M]. Beijing: China Water Power Press, (1992).
Google Scholar
[13]
Lin Duixiang, Ni Rong-Gen. Forecasts of composite laminates reinforced natural frequency mode shapes and modal damping of the finite element method [J]. Applied Mathematics and Mechanics, 1986, 7 (2) : 181-196.
Google Scholar
[14]
Xu Cida, Solid Mechanics weighted residual method [M]. Shanghai: Tongji University Press, (1992).
Google Scholar
[15]
Reissner E. The effect of transverse shear deformation on the bending of elastic plates[J]. J . of Appl. Mech. , 1945, 12: 69 -77.
Google Scholar
[16]
Mindlin R D. Influence of rotatory inertia and shear on flexural motion of isotropic, elastic plates[J]. J. of Appl. Mech, 1951, 18: 31 - 38.
DOI: 10.1115/1.4010217
Google Scholar
[17]
AmbartsumyaniS A. Theory of anisotropic plates[M]. Technomic, (1970).
Google Scholar
[18]
Bert C W. Nonlinear vibration of a rectangular plate arbitrarily laminated of anisotropic materials[J]. J. Appl. Mech. , 1973 , 40: 452 -458.
DOI: 10.1115/1.3423157
Google Scholar
[19]
Whitney J M. Structural analysis of laminated anisotropic plates[M]. Technomic, (1987).
Google Scholar
[20]
Yang Jiaming. Nonlinear Composite Plate Bending [M]. Beijing: National Defence Industry Press , 2006: 16-26.
Google Scholar
[21]
You Fengxiang, Hao Qingdong, Cmposite laminate optimization design based on sensitivity analysis [J]. Noise and Vibration Control, 2005, 25(4): 67-70.
Google Scholar
[22]
Gu Shaoping, Wei Dongqing. Tie-Cheng Wang. Large displacement FRP laminates and optimization of natural frequency [A]. Mechanics and Engineering Applications [C]. Beijing: China Forestry Publishing House , 2000, 8: 189-193.
Google Scholar
[23]
Jiang Yongqiu, Gu Hongren. Fiber of the strong laminate floor natural frequency optimization of the design [R]. Xi'an: Xi'an Jiaotong University Academic Report, (1981).
Google Scholar