Screening Method for Real-Time Detection of Influenza-A Virus in Human Throat Swabs by Surface Plasmon Resonance Biosensor

Article Preview

Abstract:

A surface plasmon resonance (SPR) biosensor was applied to detect influenza-A virus in human. The detection scheme was based on the measurement of SPR response unit resulting from the hybridization of biotinylated DNA probe immobilized on the SPR chip modified with streptavidin and the product of polymerase chain reaction reversed from the influenza-A virus RNA segment (AB514942). The prepared biosensor demonstrated optimum performance in 200 mM phosphate buffered saline (PBS) with a pH value of 7.5 and exhibited good sensitivity with a detection limit of 0.5 pM for perfect complementary hybridization. In addition, the prepared biosensor can effectively discriminate perfect complementary and other three types of mismatch: base substitute, base insertion and base deletion in 200 mM phosphate buffered saline (PBS) with a pH value of 7.5. Furthermore, the influenza-A virus in throat swab samples was directly (without RNA extraction, and amplification) detected with the prepared machine, and the result showed that the SPR response unit was in response to the dilution factor of throat swabs. Better sensitivity and specificity based on Surface Plasmon Resonance biosensor were obtained which demonstrated a promising potentiality in detecting influenza-A virus

You might also be interested in these eBooks

Info:

Periodical:

Pages:

210-219

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S Takimoto, M Grandien, MA Ishida et al. J. Clin. Microbiol 29 (1991) 470–474.

Google Scholar

[2] E Hoffmann, J Stech, Y Guan, RG Webster, DR Perez. Arch. Virol 146 (2001)2275–2289.

Google Scholar

[3] S Black, J Eskola, C Siegrist, et al.Lancet 374 (2009) 2115–22.

Google Scholar

[4] D Evans, S Cauchemez, F Hayden. J Infect Dis 200 (2009) 321–28.

Google Scholar

[5] K Nicholson, J Wood, M Zambon. Lancet 362 (2003) 1733–45.

Google Scholar

[6] F Dawood, S Jain, L Finelli, et al. N Engl J Med 360 (2009)2605–15.

Google Scholar

[7] S Takimoto, M Grandien, MA Ishida et al. J. Clin. Microbiol 29 (1991) 470–474.

Google Scholar

[8] RX Wang, J K Taubenberger. J. Anti Infect. Ther 5 (2010) 517–527.

Google Scholar

[9] B Liedberg., C Nylander,. I Lundström,., Sens. Actuators B.4 (1983)299–304..

Google Scholar

[10] S.D. Soelberg, T,Chinowsky, G Geiss et al J Ind Microbiol Biotechnol 32 (2005) 669–674

Google Scholar

[11] J. M. McDonnell, Curr. Opin. Chem. Biol. 5 (2001) 572–577.

Google Scholar

[12] P.M. Fratamico, T.P. Strobaugh, , M. B Medina, A. G. Gehring, Biotechnol .Tech. 12(1998) 571-576.

DOI: 10.1023/a:1008872002336

Google Scholar

[13] B. K Oh, Y. K Kim, Y. M Bae , W.H. Lee and J.W.J. Choi. Microb.Biotechnol. 12(2002), 780-781.

Google Scholar

[14] R L Rich , D G Myszka. Journal of Molecular Recognition 14 (2001) 273-294

Google Scholar

[15] N Rojo., G Ercilla., I Haro.. Curr. Protein Pept. Sci. 4(2003) 291-298.

Google Scholar

[16] C Wittekindt, B Fleckenstein, K Wiesmuller, B. R Eing, J. E Kuhn,. Virol. J. Methods 87(2000) 133-144.

Google Scholar

[17] H Vaisocherova, K Mrkvova , M Piliarik ,et al. J. Biosens. Bioelectron. 22(2007) 1020-1026.

Google Scholar

[18] A McGill, J Greensill, , R Marsh , A. W Craft, G. L.Toms, J.Med. Viro 74(2004) 492-498.

Google Scholar

[19] J.D. Steckbeck, H.J. Grieser et al. Med Primatol 35(2006) 248-260.

Google Scholar

[20] XD Su , HF Teh, KMM Aung et al. J Biosensors and Bioelectronics 23(2008)1715-1720.

Google Scholar

[21] C Ananthanawat, T Vilaivan, VP Hoven et al. J. Biosensors and Bioelectronics 25 (2010) 1064–1069

Google Scholar

[22] C Ananthanawat, T Vilaivan , W Mekboonsonglarp et al J. Biosensors and Bioelectronics 24 (2009) 3544–3549.

DOI: 10.1016/j.bios.2009.05.011

Google Scholar

[23] A.L.K. Lao, X.D. Su, K.M.M. Aung. et al. J. Biosensors and Bioelectronics 24 (2009) 1717–1722

Google Scholar

[24] J. wang. Small 11 (2005) 1036-1043.

Google Scholar

[25] W.P. Lu. EXPERIMENTAL STUDIES ON DNA BIOSENSORS FOR RAPID DETECTION OF PATHOGENIC MICROORGANISMS ,CHONGQING MEDICAL UNIVERSITY Doctoral post graduate paper.

Google Scholar

[26] H.C. Ou, H. Jiang, H.M. Zhou, et al. China Biotechnology, 29(2009) 44~49.

Google Scholar

[27] X.D. Su, Y.J. Wu, R. Robelek, et al. Langmuir 21(2005)348-353.

Google Scholar

[28] C Ananthanawat, T Vilaivan, V P. Hoven. et al. J. Biosensors and Bioelectronics 25 (2010) 1064–1069.

Google Scholar

[29] M. Chen, W.L. Fu, B. Zhang, et al. J.Lab Med Chin PLA 2(2002)120-123.

Google Scholar

[30] X.D. Su, H.F. The, K.M.M. Aung. Biosensors and Bioelectronics. 23(2008)1715-1720.

Google Scholar

[31] E. Milkani,S. Morais, C.R. Lambert, et al. Biosensors and Bioelectronics. 25 (2010) 1217–1220.

DOI: 10.1016/j.bios.2009.09.010

Google Scholar