Building Materials Effects of Al Content and Physical Properties on the Electromagnetic Interference Shielding of Sn Based Coating Thin Layers

Article Preview

Abstract:

This study coats complex colloid mixed with Sn-xAl powders and polyethylene on glass to examine the shield effect on electromagnetic interference (EMI). In addition, the sputtering specimens and powder coating specimens were compared. The results show that adding Al to the Sn-xAl powders can increase the electromagnetic interference (EMI) shield at lower frequencies. Notably, the number of cavities in the coating layer increased with the coating thickness, with the result that the EMI shield could not improve with an increase in the coating thickness at higher frequencies. However, the EMI shield of sputtering films had a tendency to increase as the thin thickness increased. The Sn-40Al undergoes a dispersing effect which forms a fine overlapping structure, thereby improving the low frequency EMI shielding. In addition, the Sn-20Al powders possessed the properties of a small particle size, closed structure and higher electric conductivity which improved the high frequency EMI shielding. For the sputtering films, the annealed treatment not only had higher electric conductivity but also increased the high frequency EMI shielding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-151

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Polk and E. Postow: Hand Book of Electromagnetic Fields, 2nd Ed., CRC Press Inc., (1996) 212-213.

Google Scholar

[2] C. F. Blackman, J. P. Blanchard, S. G. Benane and D. E. House: J. FASEB, 9 (1995) 547-551.

Google Scholar

[3] C. F. Blackman, S. G. Benane, J. R. Rabinowitj, D. E. House and W. T. Joines: Bioelectromagnetics, 6 (1985) 327-338.

Google Scholar

[4] C. J. Merchant, D. C. Renew, J. Swanson, ; Exposures to Power Frequency Magnetic Field in the Home;, Journal of Radiological Protection, 14 (1994) 77-87.

DOI: 10.1088/0952-4746/14/1/008

Google Scholar

[5] B. R. Mcleod and A. R. Liboff: Bioelectromagnetics, 7 (1986) 177-189.

Google Scholar

[6] J. M. R. Delgado, J. Leaf, J. L. Monteagudo and M. G. Gracia, J. Anat, 134 (1982) 533-551.

Google Scholar

[7] C. M. Chiang and C. M. Lai: A Study on the Comprehensive Indicator of Indoor Environment Assessment for Occupants' Health in Taiwan, Building and Environment, 37(2001) 387-392.

DOI: 10.1016/s0360-1323(01)00034-8

Google Scholar

[8] N. Day, J. Skinner, E. Roman and S. G. Allen: The Lancet, 354 (1999) 1925-(1931).

Google Scholar

[9] M. Fechting and A. Ahlbom: magnetic fields and cancer in children residing near Swedish High Voltage Power Lines, Am. J. Epidemiol., 138 (1993) 467-481.

DOI: 10.1093/oxfordjournals.aje.a116881

Google Scholar

[10] V. Manni, A. Lisi, D. Pozzi, S. Rieti, A. Serafino, L. Giuliani and S. Grimaili: Bioelectromagnetics, 23 (2002) 298-305.

DOI: 10.1002/bem.10023

Google Scholar

[11] J. Burnett and Y. Du: Low Frequency Magnetic Interference in High-Rise Buildings, Seventh International IBPSA Conference: Building Simulation (2001) 327-333.

Google Scholar

[12] T. S. Tenforde and W. T. Kaune: Health Phys, 53 (1987) 585-606.

Google Scholar

[13] N. Wertheimer and E. Leeper: Am. J. Epidemiol., 109 (1979) 273-284.

Google Scholar

[14] A. Ubeda, J. Leaf, M. A. Trillo and J. M. R. Delgado: J. Anat., 37 (1982) 513-536.

Google Scholar

[15] A. R. Liboff: J. Biolog. Phys., 13 (1985) 99-102.

Google Scholar

[16] D. C. Paine, T. Whitson, D. Janiac, R. Beresford and C. Yang: Journal of Applied Physics., 85 (1999)12-15.

Google Scholar

[17] D. Liu, D. Suqiao: Asia-Pacific Conference on Environmental Electromagnetics., (2000) 326-332.

Google Scholar

[18] J. L. Vossen: Transparent Conducting Films, Physics Thin Films, 9 (1997) 1-71.

Google Scholar

[19] R. M. Gresham: Plating and Surface finishing, (1998) 63-69.

Google Scholar

[20] C. S. Zhang, Q. Q. Ni, S. Y. Fu and K. Kurshiki: Composites Science and Technology, 67(14), (2007) 2793-2980.

Google Scholar

[21] T. Wang, G. Chen, C. Wu and D. Wu: Progress in Organic Coatings, 59(2), (2007)101-105.

Google Scholar

[22] K. Wenderoth and J. petermann: Polymer Composites, 10 (1992) 52-56.

Google Scholar

[23] W. W. Salisbury, Absorbent Body for Electromagnetic Waves: U. S. Patent no. 259994410. (1952).

Google Scholar

[24] R. L. Fante and M. T. McCormack: IEEE Trans. Antenna Propagation, 36 (1998) 1443-1454.

Google Scholar

[25] J. C. Liu, S. S. Ho and S. S. Bor: IEEE Proceeding-H, 140 (1993) 414-416.

Google Scholar

[26] E. G. Han, E. A. Kim and K. W. Oh: Synthetic Metals, 123 (3), 2001, 469-476.

Google Scholar

[27] White, George E., Liquid crystalline polymer and multilayer polymer-based passive signal processing components for rf / wireless multi-band applications: U. S. Patent no. 20070085108 (2007).

Google Scholar

[28] http: /www. matter-antimatter. com/periodic_table. htm.

Google Scholar

[29] F. Y. Hung, T. S. Lui, H. C. Liao: Applied Surface Science, 253 (2007) 7443-7448.

Google Scholar

[30] C. T. Lin, production of PT/PZT/PLZT thin films, powders and laser direct write patterns, U. S. Patent no. 5188902 (1993).

Google Scholar