[1]
J. Breit, Improved approximation for non-preemptive single machine flow time scheduling with an availability constraint, European Journal of Operational Research vol. 183 (2007), p.516–524.
DOI: 10.1016/j.ejor.2006.10.005
Google Scholar
[2]
T.C.E. Cheng, G. Wang, Two-machine flowshop scheduling with consecutive availability constraints, Information Processing Letters vol. 71 (1999), p.49–54.
DOI: 10.1016/s0020-0190(99)00094-0
Google Scholar
[3]
T.C.E. Cheng, G. Wang, An improved heuristic for two-machine flowshop scheduling with an availability constraint, Operations Research Letters vol. 26 (2000), p.223–229.
DOI: 10.1016/s0167-6377(00)00033-x
Google Scholar
[4]
S. Gawiejnowicz, Scheduling deteriorating jobs subject to job or machine availability constraints, European Journal of Operational Research vol. 180 (2007), p.472–478.
DOI: 10.1016/j.ejor.2006.04.021
Google Scholar
[5]
I. Kacem, Approximation algorithm for the weighted flow-time minimization on a single machine with a fixed non-availability interval, Computers & Industrial Engineering. Vol. 54 (2008), p.401–410.
DOI: 10.1016/j.cie.2007.08.005
Google Scholar
[6]
Ji, M., He, Y., Cheng, T.C.E., Single-machine scheduling with periodic maintenance to minimize makespan., Comput. Oper. Res. Vol. 34 (2007), pp.1764-1770.
DOI: 10.1016/j.cor.2005.05.034
Google Scholar
[7]
Lee, C.Y., Machine scheduling with an availability constraint., Journal of Global Optimization, vol. 9 (1996), pp.395-416.
Google Scholar
[8]
Liao CJ, Chen WJ. Single-machine scheduling with periodic maintenance and nonresumable jobs. Comput. Oper. Res. Vol. 30 (2003), p.1335–47.
DOI: 10.1016/s0305-0548(02)00074-6
Google Scholar
[9]
Xu DH, Sun KB, Li HX. Parallel machine scheduling with almost periodic maintenance and non-preemptive jobs to minimize makespan. Comput. Oper. Res. Vol. 35 (2008), p.1344 – 1349.
DOI: 10.1016/j.cor.2006.08.015
Google Scholar