Communication Security Using a Combination of Steganographic System and Empirical Mode Decomposition

Article Preview

Abstract:

nformation security has become a major issue in recent years, as new ways of information exchange arise due to the rapid development of computing, communication and internet technologies. We propose the image communication systems to secure the information by using a steganographic system and empirical mode decomposition method. The concealed message between the sender and receiver is important in the steganographic system. The encrypted message is further decomposed by using the empirical mode decomposition. The information is transmitted via the public channel and secure channel. At the receiver side the weak message can be retrieved back effectively. The retrieved message carries the same characteristics as the original message. Simulation results have confirmed that this combination model is highly robust against various signal processing operations and geometric attacks. The system increases the security of information data given a variety of constraints and conditions. Our methods have been proven effective for application in various fields which require secure communication, such as mobile telephone, internet and others. By means of this method, researchers can better understand the characteristics of the secure communication.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-153

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. K. Ahn, B. K. Kwon, and Y. S. Lee, Adv. Sci. Lett. Vol. 3 (2010), p.531.

Google Scholar

[2] Q. Zhang, Q. Wang, and X. Wei, Adv. Sci. Lett. Vol. 3 (2010), p.447.

Google Scholar

[3] A. Ghosh, A. Basu, T. S. Das, V. H. Mankar,D. Samanta, and S. K. Sarkar, Adv. Sci. Lett. Vol. 2 (2009), p.86.

Google Scholar

[4] K. Murali, Phys. Rev. E Vol. 63 (2000), p.016217.

Google Scholar

[5] K.M. Cuomo and A.V. Oppenheim, in: Proceedings of International Conference on Acoustics, Speech, and Signal Processing, Minneapolis, (1993).

Google Scholar

[6] K.M. Cuomo and A.V. Oppenheim, Phys. Rev. Lett. Vol. 71(1) (1993), p.65.

Google Scholar

[7] U. Parlitz, L. Kocarev, T. Stojanovski, and H. Preckel, Phys. Rev. E Vol. 53(5), 4351 (1996).

DOI: 10.1103/physreve.53.4351

Google Scholar

[8] S. Boccaletti and A. Farini, F.T. Phys. Rev. E Vol. 55 (5) (1997), p.4979.

Google Scholar

[9] T. Liao and N. Huang, IEEE Trans. Circuits Syst. I Vol. 46 (9) (1999), p.1144.

Google Scholar

[10] M. Feki, Chaos Solitons Fractals Vol. 18 (2003), p.141.

Google Scholar

[11] T. Liao and S. Tsai, Chaos Solitons Fractals Vol. 11 (2000), p.1387.

Google Scholar

[12] W. Yu, J. Cao, K.W. Wong, and J. Lu, Chaos Vol. 17 (2007), p.033114.

Google Scholar

[13] S. -L. Lin and P. -C. Tung, Chaos Solitons and Fractals Vol. 42 (2009), p.3234.

Google Scholar

[14] L. F. Caram, C. F. Caiafa, and A. N. Proto, An Ising Int. J. Mod. Phys. C Vol. 17, 435 (2006).

Google Scholar

[15] Y. -C. Hung and C. -K. Hu, Phys. Rev. Lett. Vol. 101 (2008), p.244102.

Google Scholar

[16] N.J. Hopper, J. Langford, and L. von Ahn, IEEE Trans. Comput. Vol. 58(5) (2009), p.662.

Google Scholar

[17] G. Álvarez, F. Montoya, M. Romera, and G. Pastor, Phys. Rev. A Vol. 306 (2003), p.200.

Google Scholar

[18] G. Álvarez, F. Montoya, M. Romera, and G. Pastor, Phys. Rev. A Vol. 319 (2003), p.334.

Google Scholar

[19] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, E. H. Shih, Q. Zheng, C. C. Tung, and H. H. Liu, Proc. Roy. Soc. Lond. A Vol. 454 (1998), p.903.

Google Scholar

[20] D. -C Lou, J. -L. Liu, and H. -K. Tso, in Int. Computer Symposium, (Taipei, Taiwan. Dec. 2004), p.555.

Google Scholar

[21] Y. -S. Kim, O. H. Kwon, and R. H. Park, in Proc. of the IEEE International Symposium on Circuits and System Vol. 4 (1999), p.80.

Google Scholar

[22] W. Zeng and B. Liu, IEEE Trans. Image Process. Vol. 8 (1999), p.1534.

Google Scholar

[23] L. -H. Chen and J. -J. Lin, Image Vision Comput. Vol. 21 (2003), p.717.

Google Scholar

[24] Y. -M. Huang, J. -L. Wu, and C. -T. Hsu, IEEE Trans. on Consum. Electron. Vol. 44 (1998), p.376.

Google Scholar

[25] W. H. Chen, C. H. Smith, and S. C. Fralick, IEEE Trans. Commun. Vol. 25 (1977), p.1004.

Google Scholar

[26] R. K. Rao and P. Yip, Discrete Cosine Transform: Algorithm, Advantages, and Applications, Academic Press, New York (1990).

Google Scholar

[27] P. Grassberger and I. Procaccia, Physica D Vol. 9 (1983), p.189.

Google Scholar

[28] E. L. Lehmann and George Casella, Theory of Point Estimation, Springer, New York (1998).

Google Scholar