A Prediction Model for Phytoplankton Abundance Based on Relevance Vector Machine

Article Preview

Abstract:

Freshwater algal bloom is caused by rapid increases or accumulations of phytoplankton abundance due to the excess of nutrients in eutrophic lakes or reservoirs. The population dynamics in such ecosystem is difficult to explain and predict due to the high non-linearity of the relationship between phytoplankton abundance and water variables. Thus the capacity of model is a crucial point for system simulation and information abstraction about the target ecosystem. Recently relevance vector machine (RVM) has been reported to be able to work more effectively with simpler algorithm, faster convergence and better accuracy than other prediction approaches, such as artificial neural network (ANN). This work for the first time adopts the RVM to develop a prediction model for phytoplankton abundance given ten water parameters including temperature, turbidity, conductivity, nitrate, total nitrogen (TN), orthophosphate (PO43-), total phosphorus (TP), TN/TP, hydraulic retention time (HRT) and water level in Macau Reservoir. The measured data are used to test and validate the model for predicting the phytoplankton abundance. The preliminary results show that the RVM based model is feasible in understanding the algal bloom problem and simulating the onset of algal bloom caused by phytoplankton abundance, thus providing a useful guide for practical algal bloom control.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

314-319

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Hakanson, J. M. Malmaeus, U. Bodemer, V. Gerhardt, Ecological Modeling, 169, 179 (2003).

Google Scholar

[2] M. Mangel, C. W. Clark (Eds. ), Dynamic Modeling in Behavioral Ecology (1988), Princeton University Press, NJ. p.308.

Google Scholar

[3] H. Camdevy´ren, N. Demyr, A. Kanik, S. Keskyn, Ecological Modeling 181, 581 (2005).

Google Scholar

[4] K. P. Singh, A. Malik, S. Sinha, Analytica Chimica Acta, 538, 355 (2005).

Google Scholar

[5] F. Zhou, G. H. Huang, H. C. Guo, W. Zhang, Z. J. Hao, Water Research, 41, 3429 (2007).

Google Scholar

[6] S. Lek, M. Delacoste, P. Baran, I. Dimopoulos, J. Lauga, S. Aulagnier, Ecological Modeling, 90, 36 (1996).

DOI: 10.1016/0304-3800(95)00142-5

Google Scholar

[7] G. M. Brion, T. R. Neelakantan, S. Lingireddy, J. AWWA, 93, 99 (2001).

Google Scholar

[8] T. A. Clair, J.M. Ehrman, Limnology and Ocenography,. 41, 921 (1996).

Google Scholar

[9] M. French, F. Recknagel, Computer Techniques in Environmental Studies V, vol. II: Environment Systems, Computational Mechanics Publications, Boston (1994), p.87–94.

Google Scholar

[10] C. Karul, S. Soyupak, A. F. Cilesiz, N. Akbay, E. Germen, Ecological Modeling, 134, 145 (2000).

DOI: 10.1016/s0304-3800(00)00360-4

Google Scholar

[11] H. W. Lee, Y. Huang, M. Dickman, A. W. Jayawardena, Ecological Modeling, 159, 179 (2003).

Google Scholar

[12] S. Lek, J. F. Guean, Ecological Modeling, 120, 65 (1999).

Google Scholar

[13] H. R. Maier, G. C. Dandy, M. D. Burch, Ecological Modeling, 105, 257 (1998).

Google Scholar

[14] A. M. Melesse, R. S. Hanley, Ecoogical Modeling, 189, 305 (2005).

Google Scholar

[15] F. Recknagel, M. French, P. Harkonen, K. I. Yabunaka, Ecological. Modeling, 96, 11 (1997).

Google Scholar

[16] K. I. Yabunaka, M. Hosomi, A. Murakami, Water Science Technology, 36 (5), 89 (1997).

Google Scholar

[17] J. Yuan, K. Wang, T. Yu, M. Fang, Engineering Applications of Artificial Intelligence, 20(7), 970 (2007).

Google Scholar

[18] W. Chan, C. Chan, K. Cheung, Engineering Application of Artificial Intelligence, 14, 105 (2001).

Google Scholar

[19] Y. Zhang, X. Qian, Y. Qian, J. Liu, F. Kong, China Environmental Science, (1): 78 (2009).

Google Scholar

[20] M. E. Tipping, Journal of Machine Learning Research, 1(3), 211 (2001).

Google Scholar

[21] A. Smola, B. Scholkhopf, Statistics and Computing 14, 199 (2004).

Google Scholar

[22] Z. H. Sun, Y. X. Sun, Developments in Chemical Engineering and Mineral Processing, 13(3–4), 243 (2005).

Google Scholar

[23] B. Yang, Z. K. Zhang, Z. S. & Sun, IEEE Signal Processing Letters, 14(10), 746 (2007).

Google Scholar

[24] L. Y. Wei, Y. Y. Yang, R. M. Nishikawa, M. N. Wernick, A. Edwards, IEEE Transactions on Medical Imaging, 24(10), 1278 (2005).

Google Scholar

[25] A., Widodo, E. Y. Kim, J. D. Son, B. S. Yang, A. C. C. Tan, D. S., Gu, Expert Systems with Applications, 36(3), 7252 (2009).

Google Scholar

[26] Standard Methods for the Examination of Water and Wastewater. A. W. W. A. a. W. E. F. American Public Health Association (1995).

Google Scholar

[27] Tristan Flectcher, University College London (2010).

Google Scholar