The Study of Type Twin Annealing in High Mn Steel

Article Preview

Abstract:

TWIP steels are high manganese steel (Mn: 17% - 35%) which are used for shaping car bodies. The structure of this kind of steels remains austenite even in room temperature. Due to low SFE (Stacking Fault Energy) twinning of grains is governing reformation mechanism in this kind of steels which strengthen TWIP steel. Regarding heat treatment influences on mechanical properties of TWIP steels, in this paper we discuss twinning phenomenon resulting from this kind of treatment. For this, following casting and hot rolling processes, we anneal the steel at 1100°C and different time cycles and study its microstructure using light microscope. The results showed that with decreasing grain size the number of twin annealing added And four types of annealing twin in the microstructure, in the end they all become one twin and then turn into grain.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1085-1088

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Grassel, L. Kruger, G. Frommeyer, LW. Meyer, High strength Fe-Mn-(Al, Si)TRIP/TWIP steels development-properties-application. J. International Journal of Plasticity. 161 (2000) 391-409.

DOI: 10.1016/s0749-6419(00)00015-2

Google Scholar

[2] B. B. Rath, M. A. Imam, C. S. Pande, Nucleation and Growth of Twin Interfaces in FCC Metals and Alloys. J. Materials Physics and Mechanic. 1 (2000) 61-66.

Google Scholar

[3] C. S. Pande, M. A. Imam, B. B. Rath, Study of Annealing Twinning in FCC Metals and Alloys. J. Metallurgical and Materials Transactions A. 21 (1990) 2891-2896.

DOI: 10.1007/bf02647209

Google Scholar

[4] S. Mahajan, C. S. Pande, M .A. Imam, B. B. Rath, Formation of Annealing Twins in FCC Crystals. J. Acta materialia 45 (1997) 2633-2638.

DOI: 10.1016/s1359-6454(96)00336-9

Google Scholar

[5] G. E. Totten, Steel Heat Treatment: Metallurgy and Technologies, 2ed CRC Press, London, 1996.

Google Scholar

[6] S. Vercammen, B. Blanpain, B. C. De Cooman, P. Wollants, Cold Rolling Behaviour Of An Austenitic Fe–30Mn–3Al–3Si TWIP-Steel: The Importance of Deformation Twinning, J. Acta Materialia. 52 (2004) 2005-2012.

DOI: 10.1016/j.actamat.2003.12.040

Google Scholar

[7] S. Salem, R. Kalidindi, R. D. Doherty, Strain Hardening Regimes and Microstructure Evolution During large Strain Compression of High Purity Titanium, J. Scripta Materialia, 46 (2002) 419-423.

DOI: 10.1016/s1359-6462(02)00005-2

Google Scholar

[8] C. S. Pande, B. B. Rath M. A. Imam, Effect of Annealing Twins on Hall-Petch Relation in Polycrystalline Materials, J. Materials Science and Engineering A, 367 (2004) 171-175.

DOI: 10.1016/j.msea.2003.09.100

Google Scholar

[9] R.E. Smallman, R.J. Bishop, Modern physical metallurgy and materials engineering 6ed, Butterworth-heinemann publications, India, 1999.

Google Scholar

[10] J. E. Burke, D. Turnbull, Recrystallization and Grain Growth, J. Progress in Metallurgical Physics, 3 (1952) 220-292.

DOI: 10.1016/0502-8205(52)90009-9

Google Scholar