Linear Parameter-Varying Modeling of Electric Vehicle Air Conditioning System

Article Preview

Abstract:

This article presents the approach of quasi LPV (Linear Parameter-Varying) modeling techniques for an air conditioning system of an electric vehicle. Vehicle air conditioning systems are strongly non-linear systems and it is a challenging task to get a precise real time model for control purposes. Therefore, an LPV method is first introduced to estimate the air conditioning system. Experimental results show that the LPV model delivers a very high accuracy for the COP (Coefficient Of Performance) estimation, that can’t be reached by traditional identification methods. Some discussion about the model structure and its application are presented and a non-linear LPV model structure similar to the Hammerstein structure is proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

318-325

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Eborn. J and Tummerscheit. H, AirConditioning – a Modelica Library for Dynamic Simulation of AC Systems, in Proceedings of the 4th International Modelica Conference. 2005: Hamburg Germany. pp.185-192.

Google Scholar

[2] Braun, M. and R. Caesar, Simulation of a Vehicle Refrigeration Cycle with Dymola/Modelica, in SAE 2005 World Congress & Exhibition. 2005: Detroit, MI, USA.

DOI: 10.4271/2005-01-1899

Google Scholar

[3] Bamieh, B. and L. Giarré, Identification of linear parameter varying models. International Journal of Robust and Non-linear Control, 2002. 12(9): pp.841-853.

DOI: 10.1002/rnc.706

Google Scholar

[4] Wei, X. and L. Del Re, LPV Identification of a Diesel Engine Torque Model, in 13th IFAC Symposium of System Identification. 2003: Rotterdam, Netherlandsp. pp.1448-1453.

DOI: 10.1016/s1474-6670(17)34957-1

Google Scholar

[5] Wang, X., P. Ortner, and D. Alberer, A Design Framework for Non-linear Predictive Engine Control, in ECOSM. 2009: Rueil-Malmaison, France.

Google Scholar

[6] Felici, F., J. -W. van Wingerden, and M. Verhaegen, Subspace identification of MIMO LPV systems using a periodic scheduling sequence. Automatica, 2007. 43(10): pp.1684-1697.

DOI: 10.1016/j.automatica.2007.02.027

Google Scholar

[7] Ljung, L., System Identification. Wiley Encyclopedia of Electrical and Electronics Engineering. 2001: John Wiley & Sons, Inc.

Google Scholar

[8] Junior, C., Modeling and Simulation of a Thermoelectric Heat Exchanger using the Object-Oriented Library TIL. Proceedings of the 6th International Modelica Conference, 2008: Bielefeld Germany. p.437 – 445.

Google Scholar

[9] Martin K., Rieberer R., Alber S., Schaefer T. and Robin J. J., Optimierung von R744-PKW Klimaanlagen mit Hilfe von numerischer Simulation, in Deutsche Kaelte-Klima Tagung. 2008: Ulm, Germany (German).

Google Scholar

[10] Huetter M., Experimentelle Untersuchungen und Modellierung eines Schwenkscheibenkompressors, Master Thesis, Graz University of Technology. 2010 (German).

Google Scholar

[11] Lang G., Kitanoski F., and Kussmann C., Unterstuetzung der Kuehlsystemauslegung von Hybridfahrzeugen durch Simulation, Waermemanagement des Kraftfahrzeuges VI, 2008: Essen, Germany (German).

Google Scholar