Parametric Analysis of Perfect Matched Layer Model of Finite Difference Time Domain Method

Article Preview

Abstract:

The parametric analysis of the electrical conductivity distribution for the Perfect Matched Layer (PML) method, is discussed in this communication. The Berenger’s PML defines a new computational space around the area of interest yielding to reduce any undesirable reflection that may perturb the main computational domain. The optimal parameters values for the conductivity distribution are obtained in order to provide lower levels of reflection, given raise to model infinite electromagnetic propagation spaces and as a consequence, to optimize the computing resources.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-144

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. P. Berenger, A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, Journal of Computational Physics, vol. 114, No. 2, pp.185-200, Oct. (1994).

DOI: 10.1006/jcph.1994.1159

Google Scholar

[2] K. S. Yee, !umerical Solution of Initial Boundary Value Problems Involving Maxwell´s Equations in Isotropic Media, IEEE AP-S Transactions, May (1966).

DOI: 10.1109/tap.1966.1138693

Google Scholar

[3] B. Enquist, and Majda, Absorbing Boundary Conditions for the !umerical Simulation of Waves, Mathematics of Computation, vol 31, pp.629-651, (1977).

DOI: 10.1090/s0025-5718-1977-0436612-4

Google Scholar

[4] G. Mur, Absorbing Boundary Condition for the finite-difference approximation of the timedomain electromagnetic field equations, IEEE Trans Electromagnetic Compatibility, vol EMC-23, pp.377-382, Nov. (1981).

DOI: 10.1109/temc.1981.303970

Google Scholar

[5] R. Clayton, and B. Engquist, 1977, Absorbing boundary conditions for acoustic and elastic wave equations: Bull. Seism. Soc. Am., 67, 1529-1540.

DOI: 10.1785/bssa0670061529

Google Scholar

[6] D. M. Sullivan, Electromagnetic simulation using the FDTD method, New York: IEEE Press, (2000).

Google Scholar

[7] J. G. Blaschak and G. A. Kriegsmann, A Comparative Study of Absorbing Boundary Conditions, Journal of Computational Physics vol. 77, pp.109-139, (1988).

DOI: 10.1016/0021-9991(88)90159-3

Google Scholar

[8] A. Taflove, Morris Brodwin, !umerical Solution of Steady-State Electromagnetic Scattering Problems Using The Time- Dependent Maxwell´s Equations, IEEE MTT, (1975).

DOI: 10.1109/tmtt.1975.1128640

Google Scholar

[9] A. Taflove and S. C. Hagness Computational Electrodynamics The Finite Difference Time Domain Method, Artech House, (2000).

Google Scholar