High Ethanol Gas Sensitivity of Nano γ-Fe2O3/ZnO Double-Layer Films Prepared by the Screen Printing Technology and the Hydrothermal Method

Article Preview

Abstract:

The gas sensor with high ethanol gas sensitivity made of nano γ-Fe2O3/ZnO double-layer films was fabricated by the screen printing technology and the hydrothermal process with addition of citric acid (CA) surfactant based on Zn(NO3)2·6H2O and HMTA. XRD and SEM techniques were used to characterize the phases and morphologies of the films. The gas sensing properties of the gas sensor to ethanol were investigated. The result shows that the gas sensitivity of the nano γ-Fe2O3/ZnO double-layer films is higher than that of the nano γ-Fe2O3 single-layer film fabricated by the screen printing technology and the nano ZnO single-layer film fabricated by the hydrothermal process with addition of citric acid (CA) surfactant based on Zn(NO3)2·6H2O and HMTA, respectively. The high ethanol gas sensitivity of the nano γ-Fe2O3/ZnO double-layer films was caused by the nano effect and the special energy band structure

You might also be interested in these eBooks

Info:

Periodical:

Pages:

350-354

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.H. Jing. Mater. Sci. Eng. B, Vol. 133(2006), pp.213-217.

Google Scholar

[2] Z.H. Jing. Mater. Sci. Eng. A, Vol. 441(2006), pp.176-180.

Google Scholar

[3] R.C. Biswal. Sens. Actuators B, Vol. 157(2011), pp.183-188.

Google Scholar

[4] Z.H. Jing. Mater. Lett. Vol. 60(2006), pp.3315-3318.

Google Scholar

[5] T. Kim, A. Sharp and B. Guo. Korean J. Chem. Eng., Vol. 27(2010), pp.1003-1009.

Google Scholar

[6] G. Neri, A. Bonavita, S. Ipsale, G. Rizzo, C. Baratto, G. Faglia and G. Sberveglieri. Mater. Sci. Eng. B, Vol. 139(2007), pp.41-47.

DOI: 10.1016/j.mseb.2007.01.039

Google Scholar

[7] Z.H. Jing and S.H. Wu. Mater. Lett. Vol. 60(2006), pp.952-956.

Google Scholar

[8] Z.H. Jing, Y. Wang and S.H. Wu. Sens. Actuators B, Vol. 113(2006), pp.177-181.

Google Scholar

[9] I.S. Lim, G.E. Jang, C.K. Kim and D.H. Yoon. Sens. Actuators B, Vol. 77(2001), pp.215-220.

Google Scholar

[10] S.W. Tao, X.Q. Liu, X.F. Chu and Y.S. Shen. Sens. Actuators B, Vol. 61(1999), pp.33-38.

Google Scholar

[11] J.H. Wang, M.S. Tong, X.Q. Wang, Y. Ma, D.L. Liu, J.K. Wu, D.S. Gao and G.T. Du. Sens. Actuators B, Vol. 84(2002), pp.95-97.

Google Scholar

[12] L.J. Ma, T. Yan, S.L. Bai, X.W. Huang, Y.J. Song, A.F. Chen and C.C. Liu. Chin. J. Chem. Eng. Vol. 12(2004), pp.282-285.

Google Scholar

[13] M.I. Ivanovskaya, D.A. Kotsikau, A. Taurino and P. Siciliano. Sens. Actuators B, Vol. 124(2007), pp.133-142.

Google Scholar

[14] K.J. Huang, L. Yan and C.S. Xie. Appl. Mech. Mater. Vols. 29-32(2010), pp.602-606.

Google Scholar

[15] M.I. Ivanovskaya, D.A. Kotsikau, G. Faglia, P. Nelli and S. Irkaew. Sens. Actuators B, Vol. 93(2003), pp.422-430.

Google Scholar

[16] H.H. Wang and C.S. Xie. J. Cryst. Growth, Vol. 291(2006), pp.187-195.

Google Scholar

[17] K.J. Huang, L. Yan and C.S. Xie. Adv. Mate. Research, Vol. (2011), pp.628-633.

Google Scholar

[18] E. Rezlescu, C. Doroftei, N. Rezlescu and P.D. Popa. Phys. Status Solidi A, Vol. 205(2008), pp.1790-1793.

DOI: 10.1002/pssa.200723617

Google Scholar

[19] N.F. Hamedani, A.R. Mahjoub, A.A. Khodadadi and Y. Mortazavi. Sens. Actuators B, Vol. 156 (2011), pp.737-742.

Google Scholar

[20] A.K. Hamed, K.R. Mansoor and R.V. Mohammad. Appl. Surf. Sci. Vol. 257(2011), p.7988–7992.

Google Scholar

[21] J. Zhang, X.H. Liu, L.W. Wang, T.L. Yang, X.Z. Guo, S.H. Wu, S.R. Wang and S.M. Zhang. Nanotech. Vol. 22(2011), p.185501.

Google Scholar

[22] P. Feng, Q. Wan and T.H. Wang. Appl. Phys. Lett. Vol. 87(2005), p.213111.

Google Scholar

[23] X.Y. Zhou, J.P. Li, M. Ma and Q.Z. Xue. Physica E, Vol. 43(2011), pp.1056-1060.

Google Scholar

[24] Y. Xu and M.A.A. Schoonen. Am. Mineral. Vol. 85(2000), pp.543-556.

Google Scholar