High Ethanol Gas Sensitivity of Nano γ-Fe2O3/ZnO Double-Layer Films Prepared by the Screen Printing Technology and the Hydrothermal Method

Abstract:

Article Preview

The gas sensor with high ethanol gas sensitivity made of nano γ-Fe2O3/ZnO double-layer films was fabricated by the screen printing technology and the hydrothermal process with addition of citric acid (CA) surfactant based on Zn(NO3)2·6H2O and HMTA. XRD and SEM techniques were used to characterize the phases and morphologies of the films. The gas sensing properties of the gas sensor to ethanol were investigated. The result shows that the gas sensitivity of the nano γ-Fe2O3/ZnO double-layer films is higher than that of the nano γ-Fe2O3 single-layer film fabricated by the screen printing technology and the nano ZnO single-layer film fabricated by the hydrothermal process with addition of citric acid (CA) surfactant based on Zn(NO3)2·6H2O and HMTA, respectively. The high ethanol gas sensitivity of the nano γ-Fe2O3/ZnO double-layer films was caused by the nano effect and the special energy band structure

Info:

Periodical:

Edited by:

Elwin Mao and Xibing Li

Pages:

350-354

DOI:

10.4028/www.scientific.net/AMM.151.350

Citation:

K. J. Huang et al., "High Ethanol Gas Sensitivity of Nano γ-Fe2O3/ZnO Double-Layer Films Prepared by the Screen Printing Technology and the Hydrothermal Method", Applied Mechanics and Materials, Vol. 151, pp. 350-354, 2012

Online since:

January 2012

Export:

Price:

$35.00

[1] Z.H. Jing. Mater. Sci. Eng. B, Vol. 133(2006), pp.213-217.

[2] Z.H. Jing. Mater. Sci. Eng. A, Vol. 441(2006), pp.176-180.

[3] R.C. Biswal. Sens. Actuators B, Vol. 157(2011), pp.183-188.

[4] Z.H. Jing. Mater. Lett. Vol. 60(2006), pp.3315-3318.

[5] T. Kim, A. Sharp and B. Guo. Korean J. Chem. Eng., Vol. 27(2010), pp.1003-1009.

[6] G. Neri, A. Bonavita, S. Ipsale, G. Rizzo, C. Baratto, G. Faglia and G. Sberveglieri. Mater. Sci. Eng. B, Vol. 139(2007), pp.41-47.

[7] Z.H. Jing and S.H. Wu. Mater. Lett. Vol. 60(2006), pp.952-956.

[8] Z.H. Jing, Y. Wang and S.H. Wu. Sens. Actuators B, Vol. 113(2006), pp.177-181.

[9] I.S. Lim, G.E. Jang, C.K. Kim and D.H. Yoon. Sens. Actuators B, Vol. 77(2001), pp.215-220.

[10] S.W. Tao, X.Q. Liu, X.F. Chu and Y.S. Shen. Sens. Actuators B, Vol. 61(1999), pp.33-38.

[11] J.H. Wang, M.S. Tong, X.Q. Wang, Y. Ma, D.L. Liu, J.K. Wu, D.S. Gao and G.T. Du. Sens. Actuators B, Vol. 84(2002), pp.95-97.

[12] L.J. Ma, T. Yan, S.L. Bai, X.W. Huang, Y.J. Song, A.F. Chen and C.C. Liu. Chin. J. Chem. Eng. Vol. 12(2004), pp.282-285.

[13] M.I. Ivanovskaya, D.A. Kotsikau, A. Taurino and P. Siciliano. Sens. Actuators B, Vol. 124(2007), pp.133-142.

[14] K.J. Huang, L. Yan and C.S. Xie. Appl. Mech. Mater. Vols. 29-32(2010), pp.602-606.

[15] M.I. Ivanovskaya, D.A. Kotsikau, G. Faglia, P. Nelli and S. Irkaew. Sens. Actuators B, Vol. 93(2003), pp.422-430.

[16] H.H. Wang and C.S. Xie. J. Cryst. Growth, Vol. 291(2006), pp.187-195.

[17] K.J. Huang, L. Yan and C.S. Xie. Adv. Mate. Research, Vol. (2011), pp.628-633.

[18] E. Rezlescu, C. Doroftei, N. Rezlescu and P.D. Popa. Phys. Status Solidi A, Vol. 205(2008), pp.1790-1793.

DOI: 10.1002/pssa.200723617

[19] N.F. Hamedani, A.R. Mahjoub, A.A. Khodadadi and Y. Mortazavi. Sens. Actuators B, Vol. 156 (2011), pp.737-742.

[20] A.K. Hamed, K.R. Mansoor and R.V. Mohammad. Appl. Surf. Sci. Vol. 257(2011), p.7988–7992.

[21] J. Zhang, X.H. Liu, L.W. Wang, T.L. Yang, X.Z. Guo, S.H. Wu, S.R. Wang and S.M. Zhang. Nanotech. Vol. 22(2011), p.185501.

[22] P. Feng, Q. Wan and T.H. Wang. Appl. Phys. Lett. Vol. 87(2005), p.213111.

[23] X.Y. Zhou, J.P. Li, M. Ma and Q.Z. Xue. Physica E, Vol. 43(2011), pp.1056-1060.

[24] Y. Xu and M.A.A. Schoonen. Am. Mineral. Vol. 85(2000), pp.543-556.

In order to see related information, you need to Login.