[1]
M. S. El-Eskandarany, M. Omori, M. Ishikuro, T. J. Konno, K. Takada, K. Sumiyama, T. Hirai, K. Suzuki, Synthesis of full-density nanocrystalline tungsten carbide by reduction of tungstic oxide at room temperature, Metall. Mater. Trans. 27 (1996) 4210-4213.
DOI: 10.1007/bf02595669
Google Scholar
[2]
H. C. Kim, D. Y. Oh, I. J. Shon, Sintering of nanophase WC-15vol.%Co hard metals by rapid sintering process, Int. J. Refract. Met. Hard Mater. 22 (2004) 197-203.
DOI: 10.1016/j.ijrmhm.2004.06.006
Google Scholar
[3]
H. C. Kim, I. J. Shon, J. K. Yoon, J. M. Doh, Z. A. Munir, Rapid sintering of ultrafine WC-Ni cermets, Int. J. Refract. Met. Hard Mater. 24 (2006) 427-431.
DOI: 10.1016/j.ijrmhm.2005.07.002
Google Scholar
[4]
I. J. Shon, I. K. Jeong, I. Y. Ko, J. M. Doh, K. D. Woo, Sintering behavior and mechanical properties of WC-10Co, WC-10Ni and WC-10Fe hard materials produced by high-frequency induction heated sintering, Ceram. Int. 35 (2009) 339-344.
DOI: 10.1016/j.ceramint.2007.11.003
Google Scholar
[5]
H. C. Kim, I. J. Shon, J. E. Garay, Z. A. Munir, Consolidation and properties of binderless sub-micron tungsten carbide by field-activated sintering, Int. J. Refract. Met. Hard Mater. 22 (2004) 257-264.
DOI: 10.1016/j.ijrmhm.2004.08.003
Google Scholar
[6]
H. C. Kim, I. J. Shon, J. K. Yoon, J. M. Doh, Consolidation of ultra fine WC and WC-Co hard materials by pulsed current activated sintering and its mechanical properties, Int. J. Refract. Met. Hard Mater. 25 (2007) 46-52.
DOI: 10.1016/j.ijrmhm.2005.11.004
Google Scholar
[7]
Holleckh, Material selection for hard coatings, J. Vac. Sci. Technol. 6(4) (1986) 2661-2669.
Google Scholar
[8]
M. S. El-Eskandarany, Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation, J. Alloys Compd. 391 (2005) 228-235.
DOI: 10.1016/j.jallcom.2004.08.064
Google Scholar
[9]
E. M. J. A. Pallone, D. R. Martin, R. Tomasi, W. J. Botta Filho, Al2O3-WC synthesis by high-energy reactive milling, Mater. Sci. Eng. 464 (2007) 47-51.
DOI: 10.1016/j.msea.2007.02.101
Google Scholar
[10]
M. Sakaki, M. S. Bafghi, J. V. Khaki, Q. Zhang, F. Saito, Effect of the aluminum content on the behavior of mechanochemical reactions in the WO3-C-Al system, J. Alloys Compd. 480 (2009) 824-829.
DOI: 10.1016/j.jallcom.2009.02.088
Google Scholar
[11]
M. Sakaki, M. S. Bafghi, J. V. Khaki, Q. Zhang, F. Saito, Control of carbon loss during synthesis of WC powder through ball milling of WO3-C-2Al mixture, J. Alloys Compd. 486 (2009) 486-491.
DOI: 10.1016/j.jallcom.2009.06.169
Google Scholar
[12]
H. Endo, M. Ueki, Hot-pressing and Pressureless Sintering of WC-Al2O3 Ceramic Composites, Trans. Mat. Res. Soc. 16B (1994) 819-822.
Google Scholar
[13]
D. K. Shetty, I. G. Wright, P. N. Mincer, A. H. Clauer, Indentation fracture of WC-Co cermets, J. Mater. Sci. 20 (1985) 1873-1882.
DOI: 10.1007/bf00555296
Google Scholar
[14]
P. A. Badkar, J. E. Bailey, The mechanism of simultaneous sintering and phase transformation in alumina, J. Mater. Sci. 11 (1976) 1794-1806.
DOI: 10.1007/bf00708257
Google Scholar
[15]
M. E. Vinayo, F. Kassabji, J. Guyonnet, P. Fauchais, Plasma sprayed WC-Co coatings: Influence of spray conditions (atmospheric and low pressure plasma spraying) on the crystal structure, porosity, and hardness, J. Vac. Sci. Technol. 3(6) (1985) 2483-2489.
DOI: 10.1116/1.572863
Google Scholar