[1]
L. Parameswaran, R. Kumar, G.K. Sahu. Effect of Carbonation on Concrete Bridge Service Life. American Society of Civil Engineers, Journal of Bridge Engineering, 2008; 13(1): 75-82.
DOI: 10.1061/(asce)1084-0702(2008)13:1(75)
Google Scholar
[2]
M.F. Montemor, M.P. Cunha, M.G. Ferreira, A.M. Simões. Corrosion behavior of rebars in fly ash mortar exposed to carbon dioxide and chlorides. Cement and Concrete Composites, 2002; 24(1): 45-53.
DOI: 10.1016/s0958-9465(01)00025-7
Google Scholar
[3]
P.F. Marques, A. Costa. Service life of RC structures: Carbonation induced corrosion. Prescriptive vs. performancebased methodologies. Construction and Building Materials, 2010; 24(3): 258-265.
DOI: 10.1016/j.conbuildmat.2009.08.039
Google Scholar
[4]
J.K. Kim, C.Y. Kim, S.T. Yi, Y. Lee. Effect of carbonation on the rebound number and compressive strength of concrete. Cement and Concrete Composites, 2009; 31(2): 139-144.
DOI: 10.1016/j.cemconcomp.2008.10.001
Google Scholar
[5]
C.D. Atiş. Accelerated carbonation and testing of concrete made with fly ash. Construction and Building Materials, 2003; 17(3): 147-152.
DOI: 10.1016/s0950-0618(02)00116-2
Google Scholar
[6]
C.D. Atiş. Carbonation-Porosity-Strength Model for Fly Ash Concrete. American Society of Civil Engineers, Journal of materials in civil engineering, 2004; 16(1): 91-94.
DOI: 10.1061/(asce)0899-1561(2004)16:1(91)
Google Scholar
[7]
K. Sisomphon, L. Franke. Carbonation rates of concretes containing high volume of pozzolanic materials. Cement and Concrete Research, 2007; 31(12): 1647-1653.
DOI: 10.1016/j.cemconres.2007.08.014
Google Scholar
[8]
P. Sulapha, S.F. Wong, T.H. Wee, Swaddiwudhipong S. Carbonation of Concrete Containing Mineral admixtures. American Society of Civil Engineers, Journal of materials in civil engineering, 2003; 15(2): 134-143.
DOI: 10.1061/(asce)0899-1561(2003)15:2(134)
Google Scholar
[9]
J. Khunthongkeaw, S. Tangtermsirikul. Model for Simulating Carbonation of Fly Ash Concrete. American Society of Civil Engineers, Journal of Materials in Civil Engineering, 2005; 17(5): 570-578.
DOI: 10.1061/(asce)0899-1561(2005)17:5(570)
Google Scholar
[10]
A. Saetta, B. Schrefler, R. Vitaliani. The carbonation of concrete and the mechanism of moisture, heat, and carbon dioxid flow through porous materials. Cement and Concrete Research, 1993; 23(4): 761-772.
DOI: 10.1016/0008-8846(93)90030-d
Google Scholar
[11]
L. Jiang, B. Lin, Y. Cai. A model for predicting carbonation of highvolume fly ash concrete . Cement and Concrete Research, 2000; 30(5): 699-702.
DOI: 10.1016/s0008-8846(00)00227-1
Google Scholar
[12]
A.L.A. Fraay, J.M. Bijen, Y.M. de Haan. The reaction of fly ash in concrete a critical examination. Cement and Concrete Research, 1989; 19(2): 235-246.
DOI: 10.1016/0008-8846(89)90088-4
Google Scholar
[13]
K. Huang, X. Wu, R. Jiang, J. Chen. Steel corrosion and protection in Reinforced concrete structures. Beijing: China Building Industry Press; (1983).
Google Scholar
[14]
G. Li, Y. Yuan, O. Geng. Climatic conditions impact on the carbonation rate of concrete. Concrete, 2004; 11: 49-53.
Google Scholar
[15]
L. Zhang, W. Jiang. Correlation of the carbonation between natural and artificial accelerate test. Journal of Xi'an Institute of Metallurgy and Construction, 1990; 22(3): 207-214.
Google Scholar