Dynamic Simulation of Flow Behavior in a New Spray Granulation Tower

Article Preview

Abstract:

Aiming to understand the asphalt granulation and separation processes in a new technique of solvent deasphalting, this work performs a detailed numerical study of the gas flow behaviors in a spray granulation tower with array nozzles. The influence of nozzle distances and jet angles on the fluid dynamics of the tower, especially on the double swirling flow, is investigated. The simulation results reveal many interesting phenomena, which include a flow consisting of two distinct regimes, a multistage flow development of jet array and a strong dependence of the velocity distribution on the nozzle arrangement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1246-1252

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Alboudwarej, J. Felix, S. Taylor, R. Badry, C. Bremner, B. Brough, C. Skeates, A. Baker, D. Palmer, K. Pattison, M. Beshry, P. Krawchuk, G. Brown, R. Calvo, J.A.C. Triana, R. Hathcock, K. Koerner, T. Hughes, D. Kundu, J.L. de Cardenas, C. West, Highlighting heavy oil, Oilfield Rev. 18 (2006).

Google Scholar

[2] A. Emadi, M. Sohrabi, M. Jamiolahmady, S. Ireland, A. Robertson, Reducing heavy oil carbon footprint and enhancing production through CO2 injection, Chem. Eng. Res. Des. 89 (2011) 1783-1793.

DOI: 10.1016/j.cherd.2010.08.008

Google Scholar

[3] S.Q. Zhao, C.M. Xu, R.A. Wang, Z.M. Xu, X.W. Sun, K.H. Chung, U.S. Patent 7, 597, 794 B2 (2009).

Google Scholar

[4] J. Wang, Y. Mao, X.W. Sun, J.Y. Wang, Structure design and experimental research of arraying and revolving jet flow distributor, Journal of Chemical Industry and Engineering (China), 62 (2011) 393-398.

Google Scholar

[5] C. Cortes, A. Gil, Modeling the gas and particle flow insider cyclone separators, Prog. Energy Combust. Sci. 33 (2007) 409-452.

DOI: 10.1016/j.pecs.2007.02.001

Google Scholar

[6] A. Saario, A. Rebola, P.J. Coelho, M. Costa, A. Oksanen, Heavy fuel oil combustion in a cylindrical laboratory furnace: measurements and modeling, Fuel. 84 (2005) 359-369.

DOI: 10.1016/j.fuel.2004.10.002

Google Scholar

[7] W. Sung, H. Lee, C. Lee, Numerical study for production performances of a methane hydrate reservoir stimulated by inhibitor injection, Energy Source. 24 (2002) 499-512.

DOI: 10.1080/00908310290086527

Google Scholar

[8] T.A.G. Langrish, D.F. Fletcher, Spray drying of food ingredients and applications of CFD in spray drying, Chem. Eng. Process. 40 (2001) 345-354.

DOI: 10.1016/s0255-2701(01)00113-1

Google Scholar

[9] W. Zhong, Y. Xiong, Z. Yuan, M. Zhang, DEM simulation of gas-solid flow behaviors in spout-fluid bed, Chem. Eng. Sci. 61 (2006) 1571-1584.

DOI: 10.1016/j.ces.2005.09.015

Google Scholar

[10] F.G. Kieviet, J. Van Raaij, P.P.E.A. De Moor, P.J.A.M. Kerkhof, Measurement and modelling of the air flow pattern in a pilot-plant spray dryer, Chem. Eng. Res. Des. 75 (1997) 321-328.

DOI: 10.1205/026387697523778

Google Scholar

[11] D.J.E. Harvie, T.A.G. Langrish, D.F. Fletcher, Numerical simulations of gas flow patterns within a tall-form spray dryer, Chem. Eng. Res. Des. 79 (2001) 235-248.

DOI: 10.1205/026387601750281761

Google Scholar

[12] L.X. Huang, K. Kumar, A.S. Mujumdar, A parametric study of the gas flow patterns and drying performance of co-current spray dryer: results of a computational fluid dynamics study, Drying Technol. 21 (2003) 957-978.

DOI: 10.1081/drt-120021850

Google Scholar

[13] M.L. Liu, Y. Mao, J.Y. Wang, J. Wang: The 6th Joint China-Japan Chemical Engineering Symposium, (2011) 28-34.

Google Scholar

[14] T.A.G. Langrish, J. Williams, D.F. Fletcher, Simulation of the effects of inlet swirl on gas flow patterns in a pilot-scale spray dryer, Chem. Eng. Res. Des. 82 (2004) 821-833.

DOI: 10.1205/0263876041596661

Google Scholar

[15] A.J. Hoekstra, J.J. Derksen, H.E.A. Van Den Akker, An experimental and numerical study of turbulent swirling flow in gas cyclones, Chem. Eng. Sci. 54 (1999) 2055-(2056).

DOI: 10.1016/s0009-2509(98)00373-x

Google Scholar