[1]
E. Candes, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, vol. 52, no. 2, pp.489-509, Feb. (2006).
DOI: 10.1109/tit.2005.862083
Google Scholar
[2]
D. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, vol. 52, no. 2, pp.489-509, April. (2006).
Google Scholar
[3]
E. Candes and M. B. Wanik, An introducing to compressive sampling, IEEE Signal Processing Magazine, vol. 25, no. 2, pp.21-30, March. (2008).
Google Scholar
[4]
E. J. Candes and J. Romberg, Sparsity and incoherence in compressive sampling, Inverse Problems, vol, 23, no. 3, pp.969-958, (2007).
DOI: 10.1088/0266-5611/23/3/008
Google Scholar
[5]
E. J. Candes and J. Romberg, , and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Communications on Pure and Applied Mathematics, vol. 59, no. 8pp. 1207–1223, (2006).
DOI: 10.1002/cpa.20124
Google Scholar
[6]
J. A. Tropp and A. C. Gilbert, " Signal recovery from random measurements via orthogonal.
Google Scholar
[7]
T. T. Do, L. Gan, N. Nguyen and T. D. Tran, Sparsity adaptive matching pursuit algorithms for practical compressed sensing, in Proceedings of the 42th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove , California, October 2008, pp.581-587.
DOI: 10.1109/acssc.2008.5074472
Google Scholar
[8]
L. Gan , Blocked compressed sensing of nature image, in Proceedings of the International Conference on Digital Signal Processing, Cardiff, UK, July 2007, pp.403-406.
Google Scholar
[9]
R. Baraniuk, A lecture on compressive sensing, IEEE Signal Processing Magazine , vol. 24, pp.118-221, July. (2007).
DOI: 10.1109/msp.2007.4286571
Google Scholar
[10]
T. Chan, S. Esedoglu, F. Park, and A. Yip, Mathematic Models in Computer Vision: The Handbook, ch. Rencent developments in total variation image restoration, pp.17-32. Springer, (2005).
DOI: 10.1007/0-387-28831-7_2
Google Scholar
[11]
M. Cardici, V. D. Gesu, M. Petrou, M. E. Tabacchi, On the Evaluation of Images Complexity: A Fuzzy Approach, , Fuzzy Logic and Application, 2006, 3849: 305-311.
DOI: 10.1007/11676935_38
Google Scholar