[1]
Barbara Zitova, Jan Flusser, Image registration method: a survey, Image and Vision Computing , Vol. 21, pp.977-1000, (2003).
DOI: 10.1016/s0262-8856(03)00137-9
Google Scholar
[2]
Le Yu, Dengrong Zhang, Eun-Jung Holden. A fast and fully automatic registration approach based on point features for multi-source remote-sensing images, Computers & Geosciences, Vol. 34, No. 7, pp.838-848, (2008).
DOI: 10.1016/j.cageo.2007.10.005
Google Scholar
[3]
Francesco Isgro, Maurizio Pilu. A fast and robust image registration method based on an early consensus paradigm,. Pattern Recognition Letters, Vol. 25, No. 8, pp.943-954, (2004).
DOI: 10.1016/j.patrec.2004.02.010
Google Scholar
[4]
C.Y. Wen, J.K. Chen. Multi-resolution image fusion technique and its application to forensic science,. Forensic Science International, Vol. 140, No. 2-3, pp.217-232, (2004).
DOI: 10.1016/j.forsciint.2003.11.034
Google Scholar
[5]
D. Rueckert, L.I. Sonoda, C. Hayes, D.L.G. Hill, M.O. Leach, D.J. Hawkes, Nonrigid registration using free-form deformations: application to breast MR images, , IEEE Trans. Med. Imag. Vol. 18 (8) p.712–721, (1999).
DOI: 10.1109/42.796284
Google Scholar
[6]
W. Jianzhe, J. Tianzi, Nonrigid registration of brain MRI using NURBS, Pattern Recogn. Lett. Vol. 28, p.214–223, (2007).
DOI: 10.1016/j.patrec.2006.07.005
Google Scholar
[7]
M. Urschler, J. Bauer, H. Ditt, H. Bischof, SIFT and shape context for feature-based nonlinear registration of thoracic CT images, in: Proceedings of the 2nd International ECCV Workshop, CVAMIA, Vol. 4241, pp.73-84, (2006).
DOI: 10.1007/11889762_7
Google Scholar
[8]
Vujovic N, Brzakovic D, Establishing the Correspondence between Control Points in Pairs of Mammographic Images, IEEE Trans. Vol. 6, pp.1388-1399, 1997. http: /peipa. essex. ac. uk/info/mias. html.
DOI: 10.1109/83.624955
Google Scholar
[9]
Naga R. Mudigonda, Rangaraj M. Rangayyan, and J.E. Leo Desautels, 'Detection of Breast Masses in Mammograms by Density Slicing and Texture Flow-Field Analysis, IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20(12), pp.1215-1227, (2001).
DOI: 10.1109/42.974917
Google Scholar
[10]
Lowe, D. G., Distinctive image features from scale-invariant keypoints, , International Journal of Computer Vision, Vol. 60(2), p.91–110, (2004).
DOI: 10.1023/b:visi.0000029664.99615.94
Google Scholar
[11]
Xuesong Lu, Su Zhang, Wei Yang, Yazhu Chen, SIFT and shape information incorporated into fluid model for non-rigid registration of ultrasound images, , computer methods and programs in biomedicine, Vol. 100, pp.123-131, (2010).
DOI: 10.1016/j.cmpb.2010.03.005
Google Scholar
[12]
K. Mikolajczyk, C. Schmid, Performance evaluation of local descriptors, , IEEE Trans. Pattern Anal. Mach. Intell. Vol. 27 (10), p.1615–1630, (2005).
DOI: 10.1109/tpami.2005.188
Google Scholar
[13]
Wendy Aguilar, Yann Frauel, Francisco Escolano, M. Elena Martinez-Perez, Arturo Espinosa-Romero, Miguel Angel Lozano, A robust Graph Transformation Matching for non-rigid registration, Image and Vision Computing, Vol. 27, p.897–910, (2009).
DOI: 10.1016/j.imavis.2008.05.004
Google Scholar
[14]
W. Aguilar, M.E. Martinez-Perez, Y. Frauel, F. Escolano, M.L. Lozano, A. Espinosa-Romero, Graph-based methods for retinal mosaicing and vascular characterization, in: 6th IAPR-TC-15 Workshop on Graph-Based Representation in Pattern Recognition, Vol. 4538, Lecture Notes in Computer Science, p.25–36, (2007).
DOI: 10.1007/978-3-540-72903-7_3
Google Scholar
[15]
Fred.L. Bookstein, Principal warps: Thin-Plate Splines and the Decomposition of Deformations, IEEE Transactions on Pattern Analysis and Machine Vision, Vol. 16, p.460–468, (1989).
DOI: 10.1109/34.24792
Google Scholar