[1]
A.Hanyga,Fractional-order relaxation laws in non-linear viscoelasticity,Continuum mech,Thermodyn.19(2007) 25-36.
DOI: 10.1007/s00161-007-0042-0
Google Scholar
[2]
H.W. Zhou C.P. Wang B.B. Han and Z.Q. Duan, A creep constitutive model for salt rock based on fractional derivatives Int J Rock Mech Mining Sci.11 (2010) 1-6
DOI: 10.1016/j.ijrmms.2010.11.004
Google Scholar
[3]
T.A. Surguladze, ON CERTAIN APPLICATIONS OF FRACTIONAL CALCULUS TO VISCOELASTICITY,Journal of Mathematical sciences. 112(2002) 4517-4557.
Google Scholar
[4]
K.ADOLFSSON,M.ENELUND,P.OLSSON, On the Fractional Order Model of Viscoelasticty,Mechanics of Time-Dipengdent Materials.9(2005) 15-34.
DOI: 10.1007/s11043-005-3442-1
Google Scholar
[5]
W.M. Zhang,A New Rheological Model Theory with Fractional Order Derivatives,Natural Science Joutnal of Xiangtan University.23(2001) 30-36.
Google Scholar
[6]
D.S. Yin J.J. Ren C.L.He, W.Chen,Stress-Stain Relation of Soft Soil Based On Fractional Calculus Operators Theory,CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING.28 (2009) 2973-2979.
Google Scholar
[7]
H.Z. Sun,W.Zhang,Analysis of soft soil with viscoelastic fractional derivative Kelvin model,Rock and soli mechanics. 28(2007) 1983-1986.
Google Scholar
[8]
X.B.Li, X.L. Jia and K.H. Xia,Analytical solution of 1-D biscoelastic consolidation of soft soils under time-dependent loadings,Rock and soli mechanic.27(2006)140-146.
Google Scholar