[1]
I. J. Perez-Amaga, G. C. Verghese, F. C. Schwcppe. Selective modal analysis with applications to electric power systems, part I: heuristic introduction. IEEE Trans. on Power Apparatus and Systems, 1982, vol. PAS-101, no. 9, Page(s): 3117-3124.
DOI: 10.1109/tpas.1982.317524
Google Scholar
[2]
G. C. Verghese, I. J. Perez-Amaga, F. C. Schwcppe. Selective modal analysis with applications to electric power systems, pan II: the dynamic stability problem. IEEE Trans. on Power Apparatus and Systems, 1982, vol. PAS-101, no. 9, Page(s): 3126-3134.
DOI: 10.1109/tpas.1982.317525
Google Scholar
[3]
B. Gao, G. K. Morison, P. Kundur. Voltage stability evaluation using modal analysis. IEEE Trans.on Power Systems, 1992, 7(4): 1529-1542.
DOI: 10.1109/59.207377
Google Scholar
[4]
Z. Huang, L. Bao, W. Xu. Generator ranking using modal analysis. IEE Proceedings-Generation, Transmission and Distribution, 2003, 150(6): 709-716.
DOI: 10.1049/ip-gtd:20030756
Google Scholar
[5]
L. C. P. da Silva, Y. Wang, V. F. Costa, et al. Assessment of generator impact on system power transfer capability using modal participation factors. IEE Proceedings-Generation, Transmission and Distribution, 2002, 149(5): 564 – 570.
DOI: 10.1049/ip-gtd:20020464
Google Scholar
[6]
Irma Martínez,Messina AR,Barocio E.Perturbation analysis of power systems: effects of second- and third-order nonlinear terms on system dynamic behavior. Electric Power Systems Research, 2004, 71(2): 159-167.
DOI: 10.1016/j.epsr.2004.01.010
Google Scholar
[7]
N. Kshatriya, U. D. Annakkage, A.M. Gole, I.T. Fernando. Improving the accuracy of normal form analysis. IEEE Transactions on Power Systems, 2005, 20(1): 286-293.
DOI: 10.1109/tpwrs.2004.841211
Google Scholar
[8]
Shu Liu, A. R. Messina, V. Vittal. Assessing Placement of Controllers and Nonlinear Behavior Using Normal Form Analysis. IEEE Trans. on Power Systems, 2005, 20(3): 1486-1495.
DOI: 10.1109/tpwrs.2005.852052
Google Scholar
[9]
Y. Ni, V. Vittal, W. Kliemann. System separation mechanism in neighborhood of relevant type-n UEP using the normal form of vector field. IEEE Trans. on power systems, 1998, 145(2): 139-144.
DOI: 10.1049/ip-gtd:19981624
Google Scholar
[10]
Chih-ming Lin, V. Vittal, W. Kliemann. Investigation of modal interaction and its effects on control performance in stressed power systems using normal forms of vector fields. IEEE Trans. on power systems, 1996, 11(2): 781-787.
DOI: 10.1109/59.496154
Google Scholar
[11]
D.K. Arrowsmith and C.M. Place. An introduction to dynamical systems. Cambridge University Press, (1990).
Google Scholar
[12]
V. I. Arnold. Geometrical methods in the theory of ordinary differential equations. Springer-Verlag, (1988).
Google Scholar
[13]
Jing Zhang, J. Y. Wen, S. J. Cheng, et al. A Novel SVC Allocation Method for Power System Voltage Stability Enhancement by Normal Forms of Diffeomorphism. IEEE Trans. on Power System. 2007, 22(4): 1819-1825.
DOI: 10.1109/tpwrs.2007.907538
Google Scholar
[14]
L. C. P. da Silva, da Costa, W. Xu. Preliminary results on improving the modal analysis technique for voltage stability assessment. IEEE Power Engineering Society Summer Meeting, Seattle, USA. 2000, vol. 3, Page(s): 1946-(1950).
DOI: 10.1109/pess.2000.868832
Google Scholar
[15]
J. Ma, Z. Y. Dong and P. Zhang. Comparison of BR and QR Eigenvalue Algorithms for Power System Small Signal Stability Analysis, IEEE Trans. on Power Systems, Vol. 21, Issue 4, Nov. 2006 Page(s): 1848-1855.
DOI: 10.1109/tpwrs.2006.883685
Google Scholar
[16]
Young-Hyun Moon, Heon-Su Ryu, Jong-Gi Lee, et al. Uniqueness of Static Voltage Stability Analysis in Power Systems. IEEE Power Engineering Society Summer Meeting, Vancouver, Canada. 2001, vol. 3, Page(s): 1536-1541.
DOI: 10.1109/pess.2001.970305
Google Scholar