p.866
p.871
p.876
p.881
p.886
p.891
p.896
p.900
p.905
Fault Diagnosis of Roller Bearing Conditions Using ANFIS
Abstract:
This paper presents a fault diagnosis method on roller bearings based on adaptive neuro-fuzzy inference system (ANFIS) in combination with feature selection. The class separability index was used as a feature selection criterion to select pertinent features from data set. An adaptive neural-fuzzy inference system was trained and used as a diagnostic classifier. For comparison purposes, the back propagation neural networks (BPN) method was also investigated. The results indicate that the ANFIS model has potential for fault diagnosis of roller bearings.
Info:
Periodical:
Pages:
886-890
Citation:
Online since:
October 2009
Authors:
Price:
Сopyright:
© 2009 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: