Band Gaps of Lamb Waves Propagating in One-Dimensional Different Quasi-Periodic Composite Thin Plates

Article Preview

Abstract:

We present a comparative study on band-gap structures of Lamb waves propagating in one-dimensional quasi-periodic composite thin plates, which are composed of different quasi-periodic models such as Cantor, Fibonacci, Thue-Morse, and Double periodic sequences, respectively. The transmitted power spectra (TPS) of the transient Lamb waves propagating in composite plates is calculated numerically by employing the finite element method. By comparing among TPS in different plates with the different ratios of the plate thickness to the lattice spacing, it is found that different quasi-periodic models present different behavior of the split-up of band gaps. Our works are significant not only for understanding intrinsic physical property of the quasi-periodic sequences, but also for designing the special structures of quasi-periodic arrays to adjust the width of band gaps and the frequency ranges of phononic crystals in applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-179

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. J. Chen, K. W. Zhang, J. Gao, and J. C. Cheng, Phys. Rev. B 73, 094307 (2006).

Google Scholar

[2] X.Y. Zhang, T. Jackson, E. Lafond, P. Deymier, and J. Vasseur, Appl. Phys. Lett. 88, 041911 (2006).

Google Scholar

[3] J.C. Hsu and T.T. Wu, Phys. Rev. B 74, 144303 (2006).

Google Scholar

[4] J. Gao, X.Y. Zou, J.C. Cheng, and B.W. Li, Appl. Phys. Lett. 92, 023510 (2008).

Google Scholar

[5] R. Merlin, K. Bajema, R. Clarke, F. -Y. Juang, and P. K. Bhattacharya, Phys. Rev. Lett. 55, 1768 (1985).

DOI: 10.1103/physrevlett.55.1768

Google Scholar

[6] J. Todd, R. Merlin, R. Clarke, K. M. Mohanty, and J. D. Axe, Phys. Rev. Lett. 57, 1157 (1986).

Google Scholar

[7] C. Wang and R. A. Barrio, Phys. Rev. Lett. 61, 191 (1988).

Google Scholar

[8] V.R. Velasco and J.E. Zárate, Prog. Surf. Sci. 67, 383(2001).

Google Scholar

[9] E.L. Albuquerque and M.G. Cottam, Phys. Rep. 376, 225–337 (2003).

Google Scholar

[10] J. C. Cheng and S. Y. Zhang, Appl. Phys. Lett. 74, 2087 (1999).

Google Scholar

[11] M. W. C. Dharma-wardana, D. J. Lockwood, J. -M. Baribeau, and D. C. Houghton, Phys. Rev. B 34, 3034 (1986).

Google Scholar

[12] J.X. Zhong, J.Q. You and J.R. Yan, J. Phys. Condens. Matter 4, 5959 (1992).

Google Scholar